IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v152y2015icp243-250.html
   My bibliography  Save this article

Soil salinity management on raised beds with different furrow irrigation modes in salt-affected lands

Author

Listed:
  • Devkota, M.
  • Gupta, R.K.
  • Martius, C.
  • Lamers, J.P.A.
  • Devkota, K.P.
  • Sayre, K.D.
  • Vlek, P.L.G.

Abstract

Mismanagement of irrigation water and the ensuing secondary salinization are threatening the sustainability of irrigated agriculture especially in many dryland regions. The permanent raised-bed/furrow system, a water-wise conservation agriculture-based practice, is gaining importance for row- and high value-crops in irrigated agriculture. However, because of additional surface exposure and elevation, raised beds may be more prone to salt accumulation especially under shallow water table conditions. A field study was carried out in 2008 and 2009 in the Khorezm region, Central Asia, to investigate the effect of three furrow irrigation methods on salt dynamics of the soil and the performance of the cotton crop on the raised bed-furrow system. The irrigation methods compared included (i) Conventional furrow irrigation wherein every furrow was irrigated (EFI) at each irrigation event; (ii) Alternate skip furrow irrigation (ASFI where one of two neighbouring furrows were alternately irrigated during consecutive irrigations events; and (iii) Permanent skip furrow irrigation (PSFI) during which irrigation was permanently skipped in one of the two neighbouring furrows during all irrigation events. For salinity management with PSFI a ‘managed salt accumulation and effective leaching’ approach was pursued.

Suggested Citation

  • Devkota, M. & Gupta, R.K. & Martius, C. & Lamers, J.P.A. & Devkota, K.P. & Sayre, K.D. & Vlek, P.L.G., 2015. "Soil salinity management on raised beds with different furrow irrigation modes in salt-affected lands," Agricultural Water Management, Elsevier, vol. 152(C), pages 243-250.
  • Handle: RePEc:eee:agiwat:v:152:y:2015:i:c:p:243-250
    DOI: 10.1016/j.agwat.2015.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415000220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qureshi, A.S. & McCornick, P.G. & Qadir, M. & Aslam, Z., 2008. "Managing salinity and waterlogging in the Indus Basin of Pakistan," Agricultural Water Management, Elsevier, vol. 95(1), pages 1-10, January.
    2. Khosla, B. K. & Gupta, R. K. & Abrol, I. P., 1979. "Salt leaching and the effect of gypsum application in a saline-sodic soil," Agricultural Water Management, Elsevier, vol. 2(3), pages 193-202, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    2. Yigezu, Yigezu A. & Abbas, Enas & Swelam, Atef & Sabry, Sami R.S. & Moustafa, Moustafa A. & Halila, Habib, 2021. "Socioeconomic, biophysical, and environmental impacts of raised beds in irrigated wheat: A case study from Egypt," Agricultural Water Management, Elsevier, vol. 249(C).
    3. Wang, Tianyu & Wang, Zhenhua & Guo, Li & Zhang, Jinzhu & Li, Wenhao & He, Huaijie & Zong, Rui & Wang, Dongwang & Jia, Zhecheng & Wen, Yue, 2021. "Experiences and challenges of agricultural development in an artificial oasis: A review," Agricultural Systems, Elsevier, vol. 193(C).
    4. Abel Saldivia-Tejeda & Simon Fonteyne & Taiyu Guan & Nele Verhulst, 2021. "Permanent Bed Width Has Little Effect on Crop Yield under Rainfed and Irrigated Conditions across Central Mexico," Agriculture, MDPI, vol. 11(10), pages 1-12, September.
    5. Kidia K. Gelaye & Franz Zehetner & Willibald Loiskandl & Andreas Klik, 2019. "Effects of soil texture and groundwater level on leaching of salt from saline fields in Kesem irrigation scheme, Ethiopia," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(4), pages 221-228.
    6. Devkota, Krishna Prasad & Devkota, Mina & Rezaei, Meisam & Oosterbaan, Roland, 2022. "Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands," Agricultural Systems, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Mostafazadeh-Fard & M. Heidarpour & A. Aghakhani & M. Feizi, 2008. "Effects of leaching on soil desalinization for wheat crop in an arid region," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 54(1), pages 20-29.
    2. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    3. Dianxi Zhang & Muhammad Safdar Sial & Naveed Ahmad & António José Filipe & Phung Anh Thu & Malik Zia-Ud-Din & António Bento Caleiro, 2020. "Water Scarcity and Sustainability in an Emerging Economy: A Management Perspective for Future," Sustainability, MDPI, vol. 13(1), pages 1-10, December.
    4. Asad Qureshi & Peter McCornick & A. Sarwar & Bharat Sharma, 2010. "Challenges and Prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1551-1569, June.
    5. Junaid Alam Memon & Mehwish Qudoos Alizai & Anwar Hussain, 2020. "Who will think outside the sink? Farmers’ willingness to invest in technologies for groundwater sustainability in Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4425-4445, June.
    6. Muhammad Mohsin Waqas & Yasir Niaz & Sikandar Ali & Ishfaq Ahmad & Haroon Rashid & Usman Khalid Awan, 2020. "Soil Salinity Mapping Using Satellite Remote Sensing: A Case Study Of Lower Chenab Canal System," Earth Sciences Pakistan (ESP), Zibeline International Publishing, vol. 4(1), pages 7-9, March.
    7. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).
    8. Singh, C. S. & Gupta, S. K. & Ram, Sewa, 1996. "Assessment and management of poor quality waters for crop production: A simulation model (SWAM)," Agricultural Water Management, Elsevier, vol. 30(1), pages 25-40, March.
    9. Ibrakhimov, Mirzakhayot & Martius, Christopher & Lamers, J.P.A. & Tischbein, Bernhard, 2011. "The dynamics of groundwater table and salinity over 17 years in Khorezm," Agricultural Water Management, Elsevier, vol. 101(1), pages 52-61.
    10. Mandare, A.B. & Ambast, S.K. & Tyagi, N.K. & Singh, J., 2008. "On-farm water management in saline groundwater area under scarce canal water supply condition in the Northwest India," Agricultural Water Management, Elsevier, vol. 95(5), pages 516-526, May.
    11. Ayesha Siddiqi, 2023. "The Sisyphean cycle of inequitable state production: State, space, and a drainage project in Pakistan," Environment and Planning C, , vol. 41(5), pages 866-883, August.
    12. Dennis Wichelns, 2015. "Achieving Water and Food Security in 2050: Outlook, Policies, and Investments," Agriculture, MDPI, vol. 5(2), pages 1-33, April.
    13. Muhammad Ali Imran & Jinlan Xu & Muhammad Sultan & Redmond R. Shamshiri & Naveed Ahmed & Qaiser Javed & Hafiz Muhammad Asfahan & Yasir Latif & Muhammad Usman & Riaz Ahmad, 2021. "Free Discharge of Subsurface Drainage Effluent: An Alternate Design of the Surface Drain System in Pakistan," Sustainability, MDPI, vol. 13(7), pages 1-13, April.
    14. Bilal Ahmad & Yan Yunxian & Zia Ur Rahman & Humaira Gultaj & Badar Naseem Siddiqui & Muhammad Ali & Jamal Nasar, 2022. "Enhancement of sugarcane production by counteracting the adverse effects of climate change in Sindh Province, Pakistan," Growth and Change, Wiley Blackwell, vol. 53(1), pages 76-90, March.
    15. Lee, Juhee & Hendricks, Nathan P., 2022. "Crop Choice Decisions in Response to Soil Salinization on Irrigated Land in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322602, Agricultural and Applied Economics Association.
    16. Muhammad Afnan Talib & Zhonghua Tang & Asfandyar Shahab & Jamil Siddique & Muhammad Faheem & Mehak Fatima, 2019. "Hydrogeochemical Characterization and Suitability Assessment of Groundwater: A Case Study in Central Sindh, Pakistan," IJERPH, MDPI, vol. 16(5), pages 1-21, March.
    17. Devkota, Krishna Prasad & Devkota, Mina & Rezaei, Meisam & Oosterbaan, Roland, 2022. "Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands," Agricultural Systems, Elsevier, vol. 198(C).
    18. Asad Sarwar Qureshi & Chris Perry, 2021. "Managing Water and Salt for Sustainable Agriculture in the Indus Basin of Pakistan," Sustainability, MDPI, vol. 13(9), pages 1-14, May.
    19. Nadeem, Adeel Ahmad & Zha, Yuanyuan & Shi, Liangsheng & Zafar, Zeeshan & Ali, Shoaib & Zhang, Yufan & Altaf, Adnan Raza & Afzal, Muhammad & Zubair, Muhammad, 2023. "SAFER-ET based assessment of irrigation patterns and impacts on groundwater use in the central Punjab, Pakistan," Agricultural Water Management, Elsevier, vol. 289(C).
    20. Gulraiz Akhter & Yonggang Ge & Naveed Iqbal & Yanjun Shang & Muhammad Hasan, 2021. "Appraisal of Remote Sensing Technology for Groundwater Resource Management Perspective in Indus Basin," Sustainability, MDPI, vol. 13(17), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:152:y:2015:i:c:p:243-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.