IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v148y2015icp16-23.html
   My bibliography  Save this article

Coffee productivity and root systems in cultivation schemes with different population arrangements and with and without drip irrigation

Author

Listed:
  • Sakai, Emilio
  • Barbosa, Eduardo Augusto Agnellos
  • Silveira, Jane Maria de Carvalho
  • Pires, Regina Célia de Matos

Abstract

This study addressed the vegetative development, yield, and root development of coffee during cultivation in the absence and presence of drip irrigation and in different population arrangements over five years. A 6×2 factorial experimental scheme was used with a randomized block design and four replications. The six plantation densities were 1.60×0.50m; 1.60×0.75m; 1.60×1.00m; 3.20×0.50m; 3.20×0.75m; and 3.20×1.00m. These plantation densities were divided into irrigated and non-irrigated treatments. The analysis of variance of the interaction between planting density and irrigation revealed absence of synergism in changing the biometric parameters. However, the isolated analysis of the factors showed significant effects of plantation densities, with the arrangement of 1.60×0.50m getting the highest values of plant height and the smallest crown diameter, over the cycles. The adoption of irrigation caused significant effects on biometric parameters, with the irrigation of coffee causing increase in plant height, crown diameter and stalk diameter. The irrigated coffee in the four cycles resulted in a higher processed coffee production, especially when coffee was grown with small row spacing. The irrigated coffee obtained the average yield of 2623kgha−1, while the coffee without irrigation had an average yield of 1026kgha−1. The irrigated treatments had greater root concentrations as compared to the non-irrigated treatments. In addition, the root concentration was greater in the 0–0.5-m layer when smaller row spacing was used.

Suggested Citation

  • Sakai, Emilio & Barbosa, Eduardo Augusto Agnellos & Silveira, Jane Maria de Carvalho & Pires, Regina Célia de Matos, 2015. "Coffee productivity and root systems in cultivation schemes with different population arrangements and with and without drip irrigation," Agricultural Water Management, Elsevier, vol. 148(C), pages 16-23.
  • Handle: RePEc:eee:agiwat:v:148:y:2015:i:c:p:16-23
    DOI: 10.1016/j.agwat.2014.08.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414002595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.08.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zotarelli, L. & Dukes, M.D. & Scholberg, J.M.S. & Muñoz-Carpena, R. & Icerman, J., 2009. "Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling," Agricultural Water Management, Elsevier, vol. 96(8), pages 1247-1258, August.
    2. Zotarelli, Lincoln & Scholberg, Johannes M. & Dukes, Michael D. & Muñoz-Carpena, Rafael & Icerman, Jason, 2009. "Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling," Agricultural Water Management, Elsevier, vol. 96(1), pages 23-34, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byrareddy, Vivekananda & Kouadio, Louis & Kath, Jarrod & Mushtaq, Shahbaz & Rafiei, Vahid & Scobie, Michael & Stone, Roger, 2020. "Win-win: Improved irrigation management saves water and increases yield for robusta coffee farms in Vietnam," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Liu, Xiaogang & Li, Fusheng & Zhang, Yan & Yang, Qiliang, 2016. "Effects of deficit irrigation on yield and nutritional quality of Arabica coffee (Coffea arabica) under different N rates in dry and hot region of southwest China," Agricultural Water Management, Elsevier, vol. 172(C), pages 1-8.
    3. Liao, Renkuan & Zhang, Shirui & Zhang, Xin & Wang, Mingfei & Wu, Huarui & Zhangzhong, Lili, 2021. "Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Liu, Xiaogang & Qi, Yuntao & Li, Fusheng & Yang, Qiliang & Yu, Liming, 2018. "Impacts of regulated deficit irrigation on yield, quality and water use efficiency of Arabica coffee under different shading levels in dry and hot regions of southwest China," Agricultural Water Management, Elsevier, vol. 204(C), pages 292-300.
    5. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng, 2016. "Can the drip irrigation under film mulch reduce crop evapotranspiration and save water under the sufficient irrigation condition?," Agricultural Water Management, Elsevier, vol. 177(C), pages 128-137.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    2. Katsoulas, N. & Sapounas, A. & De Zwart, F. & Dieleman, J.A. & Stanghellini, C., 2015. "Reducing ventilation requirements in semi-closed greenhouses increases water use efficiency," Agricultural Water Management, Elsevier, vol. 156(C), pages 90-99.
    3. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    4. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Douthe, Cyril & El Aou-ouad, Hanan & Ribas-Carbó, Miquel & Galmés, Jeroni, 2019. "Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.
    6. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    7. Li, Shengping & Tan, Deshui & Wu, Xueping & Degré, Aurore & Long, Huaiyu & Zhang, Shuxiang & Lu, Jinjing & Gao, Lili & Zheng, Fengjun & Liu, Xiaotong & Liang, Guopeng, 2021. "Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3–-N distributions," Agricultural Water Management, Elsevier, vol. 251(C).
    8. Guida, Gianpiero & Sellami, Mohamed Houssemeddine & Mistretta, Carmela & Oliva, Marco & Buonomo, Roberta & De Mascellis, Roberto & Patanè, Cristina & Rouphael, Youssef & Albrizio, Rossella & Giorio, P, 2017. "Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions," Agricultural Water Management, Elsevier, vol. 180(PA), pages 126-135.
    9. Cardenas-Lailhacar, B. & Dukes, M.D., 2010. "Precision of soil moisture sensor irrigation controllers under field conditions," Agricultural Water Management, Elsevier, vol. 97(5), pages 666-672, May.
    10. Sharma, Sat Pal & Leskovar, Daniel I. & Crosby, Kevin M. & Volder, Astrid & Ibrahim, A.M.H., 2014. "Root growth, yield, and fruit quality responses of reticulatus and inodorus melons (Cucumis melo L.) to deficit subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 75-85.
    11. Liu, Jing & Bi, Xiaoqing & Ma, Maoting & Jiang, Lihua & Du, Lianfeng & Li, Shunjiang & Sun, Qinping & Zou, Guoyuan & Liu, Hongbin, 2019. "Precipitation and irrigation dominate soil water leaching in cropland in Northern China," Agricultural Water Management, Elsevier, vol. 211(C), pages 165-171.
    12. Wang, Lichun & Ning, Songrui & Chen, Xiaoli & Li, Youli & Guo, Wenzhong & Ben-Gal, Alon, 2021. "Modeling tomato root water uptake influenced by soil salinity under drip irrigation with an inverse method," Agricultural Water Management, Elsevier, vol. 255(C).
    13. Liao, Renkuan & Zhang, Shirui & Zhang, Xin & Wang, Mingfei & Wu, Huarui & Zhangzhong, Lili, 2021. "Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept," Agricultural Water Management, Elsevier, vol. 245(C).
    14. Ming Zhang & Tao Lei & Xianghong Guo & Jianxin Liu & Xiaoli Gao & Zhen Lei & Xiaolan Ju, 2023. "The Effect of Water–Zeolite Amount–Burial Depth on Greenhouse Tomatoes with Drip Irrigation under Mulch," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    15. Wang, Chenxia & Gu, Feng & Chen, Jinliang & Yang, Hui & Jiang, Jingjing & Du, Taisheng & Zhang, Jianhua, 2015. "Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies," Agricultural Water Management, Elsevier, vol. 161(C), pages 9-19.
    16. Kuşçu, Hayrettin & Turhan, Ahmet & Demir, Ali Osman, 2014. "The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 133(C), pages 92-103.
    17. Mohammad Nabil Elnesr & Abdurrahman Ali Alazba & Assem Ibrahim Zein El-Abedein & Mahmoud Maher El-Adl, 2015. "Evaluating the Effect of Three Water Management Techniques on Tomato Crop," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    18. Santos, Leonardo N.S. dos & Matsura, Edson E. & Gonçalves, Ivo Z. & Barbosa, Eduardo A.A. & Nazário, Aline A. & Tuta, Natalia F. & Elaiuy, Marcelo C.L. & Feitosa, Daniel R.C. & de Sousa, Allan C.M., 2016. "Water storage in the soil profile under subsurface drip irrigation: Evaluating two installation depths of emitters and two water qualities," Agricultural Water Management, Elsevier, vol. 170(C), pages 91-98.
    19. Farneselli, Michela & Benincasa, Paolo & Tosti, Giacomo & Simonne, Eric & Guiducci, Marcello & Tei, Francesco, 2015. "High fertigation frequency improves nitrogen uptake and crop performance in processing tomato grown with high nitrogen and water supply," Agricultural Water Management, Elsevier, vol. 154(C), pages 52-58.
    20. Ma, Kai & Wang, Zhenhua & Li, Haiqiang & Wang, Tianyu & Chen, Rui, 2022. "Effects of nitrogen application and brackish water irrigation on yield and quality of cotton," Agricultural Water Management, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:148:y:2015:i:c:p:16-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.