IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v118y2013icp87-92.html
   My bibliography  Save this article

Effects of irrigation and wide-precision planting on water use, radiation interception, and grain yield of winter wheat in the North China Plain

Author

Listed:
  • Dandan, Zhao
  • Jiayin, Shen
  • Kun, Lang
  • Quanru, Liu
  • Quanqi, Li

Abstract

To develop a water-saving planting pattern in the North China Plain, in the 2010–2011 and 2011–2012 winter wheat growing seasons, 2 types of planting patterns (wide-precision planting and conventional-cultivation planting) and 3 different irrigation treatments (60.0-mm irrigation at both jointing and heading stages, 60.0-mm irrigation at only the jointing stage, and no irrigation at any time during the growing season) were conducted. These methods were used to study the effects of irrigation and wide-precision planting on water use, leaf area index (LAI), photosynthetically active radiation (PAR) capture ratio, dry matter accumulation, and grain yield of winter wheat. The results indicated that after 60.0mm irrigation at the jointing and heading stages of winter wheat, the soil water content and the LAI from the wide-precision planting were higher than those from the conventional-cultivation planting late in the growing seasons. The PAR capture ratios at 40 and 60cm above the ground in the wide-precision planting were higher than those in the conventional-cultivation planting. At the milking stage, the wide-precision planting with 60.0-mm irrigation at both the jointing and heading stages had significantly (LSD, P<0.05) high dry matter accumulation. Compared to the conventional-cultivation planting, the wide-precision planting with 60.0-mm irrigation at both jointing and heading stages had the highest grain yield, which can be attributed to increased spike numbers. The results indicate that the wide-precision planting with 60.0-mm irrigation at both the jointing and heading stages of winter wheat should be extended in the North China Plain.

Suggested Citation

  • Dandan, Zhao & Jiayin, Shen & Kun, Lang & Quanru, Liu & Quanqi, Li, 2013. "Effects of irrigation and wide-precision planting on water use, radiation interception, and grain yield of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 118(C), pages 87-92.
  • Handle: RePEc:eee:agiwat:v:118:y:2013:i:c:p:87-92
    DOI: 10.1016/j.agwat.2012.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412003125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Quanqi & Chen, Yuhai & Liu, Mengyu & Zhou, Xunbo & Yu, Songlie & Dong, Baodi, 2008. "Effects of irrigation and planting patterns on radiation use efficiency and yield of winter wheat in North China," Agricultural Water Management, Elsevier, vol. 95(4), pages 469-476, April.
    2. Li, Quanqi & Dong, Baodi & Qiao, Yunzhou & Liu, Mengyu & Zhang, Jiwang, 2010. "Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China," Agricultural Water Management, Elsevier, vol. 97(10), pages 1676-1682, October.
    3. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    4. Dong, Baodi & Shi, Lei & Shi, Changhai & Qiao, Yunzhou & Liu, Mengyu & Zhang, Zhengbin, 2011. "Grain yield and water use efficiency of two types of winter wheat cultivars under different water regimes," Agricultural Water Management, Elsevier, vol. 99(1), pages 103-110.
    5. Zhang, Jiyang & Sun, Jingsheng & Duan, Aiwang & Wang, Jinglei & Shen, Xiaojun & Liu, Xiaofei, 2007. "Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 41-47, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting Chen & Yonghe Zhu & Rui Dong & Minjian Ren & Jin He & Fengmin Li, 2021. "Belt Uniform Sowing Pattern Boosts Yield of Different Winter Wheat Cultivars in Southwest China," Agriculture, MDPI, vol. 11(11), pages 1-11, November.
    2. Angelique Twizerimana & Etienne Niyigaba & Innocent Mugenzi & Wansim Aboubakar Ngnadong & Chuan Li & Tian Qi Hao & Bosco J. Shio & Jiang Bo Hai, 2020. "The Combined Effect of Different Sowing Methods and Seed Rates on the Quality Features and Yield of Winter Wheat," Agriculture, MDPI, vol. 10(5), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quanqi, Li & Xunbo, Zhou & Yuhai, Chen & Songlie, Yu, 2012. "Water consumption characteristics of winter wheat grown using different planting patterns and deficit irrigation regime," Agricultural Water Management, Elsevier, vol. 105(C), pages 8-12.
    2. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Q.Q. Li & X.B. Zhou & Y.H. Chen & S.L. Yu, 2010. "Grain yield and quality of winter wheat in different planting patterns under deficit irrigation regimes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 56(10), pages 482-487.
    4. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    5. Dong, Baodi & Liu, Mengyu & Jiang, Jingwei & Shi, Changhai & Wang, Xiaoming & Qiao, Yunzhou & Liu, Yueyan & Zhao, Zhihai & li, Dongxiao & Si, Fuyan, 2014. "Growth, grain yield, and water use efficiency of rain-fed spring hybrid millet (Setaria italica) in plastic-mulched and unmulched fields," Agricultural Water Management, Elsevier, vol. 143(C), pages 93-101.
    6. Jia, Qianmin & Sun, Lefeng & Mou, Hongyan & Ali, Shahzad & Liu, Donghua & Zhang, Yan & Zhang, Peng & Ren, Xiaolong & Jia, Zhikuan, 2018. "Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions," Agricultural Water Management, Elsevier, vol. 201(C), pages 287-298.
    7. Ma, Dedi & Chen, Lei & Qu, Hongchao & Wang, Yilin & Misselbrook, Tom & Jiang, Rui, 2018. "Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 202(C), pages 166-173.
    8. Zhao, Jie & Han, Tong & Wang, Chong & Jia, Hao & Worqlul, Abeyou W. & Norelli, Nicole & Zeng, Zhaohai & Chu, Qingquan, 2020. "Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain," Agricultural Water Management, Elsevier, vol. 240(C).
    9. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Ma, Xiangcheng & Sohail, Amir & Manzoor, & Arif, Muhammad & Ren, Xiaolong & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2019. "The ridge-furrow system combined with supplemental irrigation strategies to improves radiation use efficiency and winter wheat productivity in semi-arid regions of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 76-86.
    10. Zhang, Shibo & Zhang, Guixin & Xia, Zhenqing & Wu, Mengke & Bai, Jingxuan & Lu, Haidong, 2022. "Optimizing plastic mulching improves the growth and increases grain yield and water use efficiency of spring maize in dryland of the Loess Plateau in China," Agricultural Water Management, Elsevier, vol. 271(C).
    11. Zeng, Ruiyun & Lin, Xiaomao & Welch, Stephen M. & Yang, Shanshan & Huang, Na & Sassenrath, Gretchen F. & Yao, Fengmei, 2023. "Impact of water deficit and irrigation management on winter wheat yield in China," Agricultural Water Management, Elsevier, vol. 287(C).
    12. Wang, Xiangping & Yang, Jingsong & Liu, Guangming & Yao, Rongjiang & Yu, Shipeng, 2015. "Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution," Agricultural Water Management, Elsevier, vol. 149(C), pages 44-54.
    13. Yarami, Najmeh & Sepaskhah, Ali Reza, 2015. "Physiological growth and gas exchange response of saffron (Crocus sativus L.) to irrigation water salinity, manure application and planting method," Agricultural Water Management, Elsevier, vol. 154(C), pages 43-51.
    14. Yan, Zhenxing & Gao, Chao & Ren, Yujie & Zong, Rui & Ma, Yuzhao & Li, Quanqi, 2017. "Effects of pre-sowing irrigation and straw mulching on the grain yield and water use efficiency of summer maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 186(C), pages 21-28.
    15. Ali, Shahzad & Ma, Xiangcheng & Jia, Qianmin & Ahmad, Irshad & Ahmad, Shakeel & Sha, Zhang & Yun, Bai & Muhammad, Adil & Ren, Xiaolong & shah, Shahen & Akbar, Habib & Cai, Tie & Zhang, Jiahua & Jia, Z, 2019. "Supplemental irrigation strategy for improving grain filling, economic return, and production in winter wheat under the ridge and furrow rainwater harvesting system," Agricultural Water Management, Elsevier, vol. 226(C).
    16. Yarami, Najmeh & Sepaskhah, Ali Reza, 2015. "Saffron response to irrigation water salinity, cow manure and planting method," Agricultural Water Management, Elsevier, vol. 150(C), pages 57-66.
    17. Meng, Xiangping & Lian, Yanhao & Liu, Qi & Zhang, Peng & Jia, Zhikuan & Han, Qingfang, 2020. "Optimizing the planting density under the ridge and furrow rainwater harvesting system to improve crop water productivity for foxtail millet in semiarid areas," Agricultural Water Management, Elsevier, vol. 238(C).
    18. Jia, Qianmin & Sun, Lefeng & Ali, Shahzad & Zhang, Yan & Liu, Donghua & Kamran, Muhammad & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong, 2018. "Effect of planting density and pattern on maize yield and rainwater use efficiency in the Loess Plateau in China," Agricultural Water Management, Elsevier, vol. 202(C), pages 19-32.
    19. Wang, Xiquan & Nie, Jiangwen & Wang, Peixin & Zhao, Jie & Yang, Yadong & Wang, Shang & Zeng, Zhaohai & Zang, Huadong, 2021. "Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat – summer maize systems?," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Hu, Yajin & Ma, Penghui & Wu, Shufang & Sun, Benhua & Feng, Hao & Pan, Xiaolian & Zhang, Binbin & Chen, Guangjie & Duan, Chenxiao & Lei, Qi & Siddique, Kadambot H.M. & Liu, Boyang, 2020. "Spatial-temporal distribution of winter wheat (Triticum aestivum L.) roots and water use efficiency under ridge–furrow dual mulching," Agricultural Water Management, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:118:y:2013:i:c:p:87-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.