IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v100y2011i1p58-69.html
   My bibliography  Save this article

Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area

Author

Listed:
  • Wang, Ruoshui
  • Kang, Yaohu
  • Wan, Shuqin
  • Hu, Wei
  • Liu, Shiping
  • Liu, Shuhui

Abstract

A 3-year experiment was conducted in an extremely dry and saline wasteland to investigate the effects of the drip irrigation on salt distributions and the growth of cotton under different irrigation regimes in Xinjiang, Northwest China. The experiment included five treatments in which the soil matric potential (SMP) at 20cm depth was controlled at −5, −10, −15, −20, and −25kPa after cotton was established. The results indicated that a favorable low salinity zone existed in the root zone throughout the growing season when the SMP threshold was controlled below −25kPa. When the SMP value decreased, the electrical conductivity of the saturation paste extract (ECe) in the root zone after the growing season decreased as well. After the 3-year experiment, the seed-cotton yield had reached 84% of the average yield level for non-saline soil in the study region and the emergence rate was 78.1% when the SMP target value was controlled below −5kPa. The average pH of the soil decreased slightly after 3 years of cultivation. The highest irrigation water use efficiency (IWUE) values were recorded when the SMP was around −20kPa. After years of reclamation and utilization, the saline soil gradually changed to a moderately saline soil. The SMP of −5kPa at a depth of 20cm immediately under a drip emitter can be used as an indicator for cotton drip irrigation scheduling in saline areas in Xinjiang, Northwest China.

Suggested Citation

  • Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
  • Handle: RePEc:eee:agiwat:v:100:y:2011:i:1:p:58-69
    DOI: 10.1016/j.agwat.2011.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411001934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayars, J. E. & Phene, C. J. & Hutmacher, R. B. & Davis, K. R. & Schoneman, R. A. & Vail, S. S. & Mead, R. M., 1999. "Subsurface drip irrigation of row crops: a review of 15 years of research at the Water Management Research Laboratory," Agricultural Water Management, Elsevier, vol. 42(1), pages 1-27, September.
    2. Rajak, Daleshwar & Manjunatha, M.V. & Rajkumar, G.R. & Hebbara, M. & Minhas, P.S., 2006. "Comparative effects of drip and furrow irrigation on the yield and water productivity of cotton (Gossypium hirsutum L.) in a saline and waterlogged vertisol," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 30-36, May.
    3. Roberts, Trenton L. & White, Scott A. & Warrick, Arthur W. & Thompson, Thomas L., 2008. "Tape depth and germination method influence patterns of salt accumulation with subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 95(6), pages 669-677, June.
    4. Hanson, B. & May, D., 2004. "Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability," Agricultural Water Management, Elsevier, vol. 68(1), pages 1-17, July.
    5. Batchelor, Charles & Lovell, Christopher & Murata, Monica, 1996. "Simple microirrigation techniques for improving irrigation efficiency on vegetable gardens," Agricultural Water Management, Elsevier, vol. 32(1), pages 37-48, November.
    6. Chen, Ming & Kang, Yaohu & Wan, Shuqin & Liu, Shi-ping, 2009. "Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.)," Agricultural Water Management, Elsevier, vol. 96(12), pages 1766-1772, December.
    7. Chen, Weiping & Hou, Zhenan & Wu, Laosheng & Liang, Yongchao & Wei, Changzhou, 2010. "Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China," Agricultural Water Management, Elsevier, vol. 97(12), pages 2001-2008, November.
    8. Hou, Zhenan & Chen, Weiping & Li, Xiao & Xiu, Lin & Wu, Laosheng, 2009. "Effects of salinity and fertigation practice on cotton yield and 15N recovery," Agricultural Water Management, Elsevier, vol. 96(10), pages 1483-1489, October.
    9. Bassil, Elias S. & Kaffka, Stephen R., 2002. "Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation: II. Crop response to salinity," Agricultural Water Management, Elsevier, vol. 54(1), pages 81-92, March.
    10. Phene, C. J. & Allee, C. P. & Pierro, J. D., 1989. "Soil matric potential sensor measurements in real-time irrigation scheduling," Agricultural Water Management, Elsevier, vol. 16(3), pages 173-185, September.
    11. Moreno, F. & Cabrera, F. & Andrew, L. & Vaz, R. & Martin-Aranda, J. & Vachaud, G., 1995. "Water movement and salt leaching in drained and irrigated marsh soils of southwest Spain," Agricultural Water Management, Elsevier, vol. 27(1), pages 25-44, April.
    12. Bassil, Elias S. & Kaffka, Stephen R., 2002. "Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation: I. Consumptive water use," Agricultural Water Management, Elsevier, vol. 54(1), pages 67-80, March.
    13. Barrett-Lennard, E. G., 2002. "Restoration of saline land through revegetation," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 213-226, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Jiang, Shufang & Liu, Shuhui, 2012. "Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area," Agricultural Water Management, Elsevier, vol. 110(C), pages 109-117.
    2. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    3. Liu, Shuhui & Kang, Yaohu & Wan, Shuqin & Wang, Zhichun & Liang, Zhengwei & Sun, Xiaojing, 2011. "Water and salt regulation and its effects on Leymus chinensis growth under drip irrigation in saline-sodic soils of the Songnen Plain," Agricultural Water Management, Elsevier, vol. 98(9), pages 1469-1476, July.
    4. Wang, Ruoshui & Wan, Shuqin & Sun, Jiaxia & Xiao, Huijie, 2018. "Soil salinity, sodicity and cotton yield parameters under different drip irrigation regimes during saline wasteland reclamation," Agricultural Water Management, Elsevier, vol. 209(C), pages 20-31.
    5. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    6. Liu, Shuhui & Kang, Yaohu & Wan, Shuqin & Wang, Zhichun & Liang, Zhengwei & Jiang, Shufang & Wang, Ruoshui, 2012. "Germination and growth of Puccinellia tenuiflora in saline-sodic soil under drip irrigation," Agricultural Water Management, Elsevier, vol. 109(C), pages 127-134.
    7. Istanbulluoglu, Ahmet, 2009. "Effects of irrigation regimes on yield and water productivity of safflower (Carthamus tinctorius L.) under Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 96(12), pages 1792-1798, December.
    8. Wang, Haidong & Wu, Lifeng & Wang, Xiukang & Zhang, Shaohui & Cheng, Minghui & Feng, Hao & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen, 2021. "Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    10. E. Öztürk & H. Özer & T. Polat, 2008. "Growth and yield of safflower genotypes grown under irrigated and non-irrigated conditions in a highland environment," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 54(10), pages 453-460.
    11. Zhangzhong, Lili & Yang, Peiling & Zhen, Wengang & Zhang, Xin & Wang, Caiyuan, 2019. "A kinetic model for the chemical clogging of drip irrigation system using saline water," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    12. Wang, Ruoshui & Wan, Shuqin & Kang, Yaohu & Dou, Chaoyin, 2014. "Assessment of secondary soil salinity prevention and economic benefit under different drip line placement and irrigation regime in northwest China," Agricultural Water Management, Elsevier, vol. 131(C), pages 41-49.
    13. Yu, Yingduo & Shihong, Gong & Xu, Di & Jiandong, Wang & Ma, Xiaopeng, 2010. "Effects of Treflan injection on winter wheat growth and root clogging of subsurface drippers," Agricultural Water Management, Elsevier, vol. 97(5), pages 723-730, May.
    14. Cai, Yaohui & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Wu, ShouJun & Zhao, Xiao, 2017. "Simulation of soil water movement under subsurface irrigation with porous ceramic emitter," Agricultural Water Management, Elsevier, vol. 192(C), pages 244-256.
    15. Shahrokhnia, Mohammad Hossein & Sepaskhah, Ali Reza, 2016. "Effects of irrigation strategies, planting methods and nitrogen fertilization on yield, water and nitrogen efficiencies of safflower," Agricultural Water Management, Elsevier, vol. 172(C), pages 18-30.
    16. Hou, Zhenan & Chen, Weiping & Li, Xiao & Xiu, Lin & Wu, Laosheng, 2009. "Effects of salinity and fertigation practice on cotton yield and 15N recovery," Agricultural Water Management, Elsevier, vol. 96(10), pages 1483-1489, October.
    17. Han, Xiaoyu & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin, 2022. "Effect of salinity on oleic sunflower (Helianthus annuus Linn.) under drip irrigation in arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 259(C).
    18. Yang, Kaijing & Wang, Fengxin & Shock, Clinton C. & Kang, Shaozhong & Huo, Zailin & Song, Na & Ma, Dan, 2017. "Potato performance as influenced by the proportion of wetted soil volume and nitrogen under drip irrigation with plastic mulch," Agricultural Water Management, Elsevier, vol. 179(C), pages 260-270.
    19. Ma, Chao & Wang, Jun & Li, Jiusheng, 2023. "Utilization of soil and fertilizer nitrogen supply under mulched drip irrigation with various water qualities in arid regions," Agricultural Water Management, Elsevier, vol. 280(C).
    20. Ghamarnia, Houshang & Gholamian, Mohsen, 2013. "The effect of saline shallow ground and surface water under deficit irrigation on (Carthamus tinctorius L.) in semi arid condition," Agricultural Water Management, Elsevier, vol. 118(C), pages 29-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:100:y:2011:i:1:p:58-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.