IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v157y2017icp11-21.html
   My bibliography  Save this article

Variations in nitrogen utilisation on conventional and organic dairy farms in Norway

Author

Listed:
  • Koesling, Matthias
  • Hansen, Sissel
  • Bleken, Marina Azzaroli

Abstract

Reduced N-surpluses in dairy farming is a strategy to reduce the environmental pollution from this production. This study was designed to analyse the important variables influencing nitrogen (N) surplus per hectare and per unit of N in produce for dairy farms and dairy systems across 10 certified organic and 10 conventional commercial dairy farms in Møre og Romsdal County, Norway, between 2010 and 2012. The N-surplus per hectare was calculated as N-input (net N-purchase and inputs from biological N-fixation, atmospheric deposition and free rangeland) minus N in produce (sold milk and meat gain), and the N-surplus per unit of N-produce as net N-input divided by N in produce. On average, the organic farms produced milk and meat with lower N-surplus per hectare (88±25kgN·ha−1) than did conventional farms (220±56kgN·ha−1). Also, the N-surplus per unit of N-produce was on average lower on organic than on conventional farms, 4.2±1.2kgN·kgN−1 and 6.3±0.9kgN·kgN−1, respectively. All farms included both fully-cultivated land and native grassland. N-surplus was found to be higher on the fully cultivated land than on native grassland. N-fertilizers (43%) and concentrates (30%) accounted for most of the N input on conventional farms. On organic farms, biological N-fixation and concentrates contributed to 32% and 36% of the N-input (43±18kgN·kgN−1 and 48±11kgN·kgN−1), respectively. An increase in N-input per hectare increased the amount of N-produce in milk and meat per hectare, but, on average for all farms, only 11% of the N-input was utilised as N-output; however, the N-surplus per unit of N in produce (delivered milk and meat gain) was not correlated to total N-input. This surplus was calculated for the dairy system, which also included the N-surplus on the off-farm area. Only 16% and 18% of this surplus on conventional and organic farms, respectively, was attributed to surplus derived from off-farm production of purchased feed and animals. Since the dairy farm area of conventional and organic farms comprised 52% and 60% of the dairy system area, respectively, it is crucial to relate production not only to dairy farm area but also to the dairy system area. On conventional dairy farms, the N-surplus per unit of N in produce decreased with increasing milk yield per cow. Organic farms tended to have lower N-surpluses than conventional farms with no correlation between the milk yield and the N-surplus. For both dairy farm and dairy system area, N-surpluses increased with increasing use of fertilizer N per hectare, biological N-fixation, imported concentrates and roughages and decreased with higher production per area. This highlights the importance of good agronomy that well utilize available nitrogen.

Suggested Citation

  • Koesling, Matthias & Hansen, Sissel & Bleken, Marina Azzaroli, 2017. "Variations in nitrogen utilisation on conventional and organic dairy farms in Norway," Agricultural Systems, Elsevier, vol. 157(C), pages 11-21.
  • Handle: RePEc:eee:agisys:v:157:y:2017:i:c:p:11-21
    DOI: 10.1016/j.agsy.2017.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16303432
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2017.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stott, Kerry J. & Gourley, Cameron J.P., 2016. "Intensification, nitrogen use and recovery in grazing-based dairy systems," Agricultural Systems, Elsevier, vol. 144(C), pages 101-112.
    2. Mark A. Sutton & Oene Oenema & Jan Willem Erisman & Adrian Leip & Hans van Grinsven & Wilfried Winiwarter, 2011. "Too much of a good thing," Nature, Nature, vol. 472(7342), pages 159-161, April.
    3. Glenn Sheriff, 2005. "Efficient Waste? Why Farmers Over-Apply Nutrients and the Implications for Policy Design," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 27(4), pages 542-557.
    4. de Ponti, Tomek & Rijk, Bert & van Ittersum, Martin K., 2012. "The crop yield gap between organic and conventional agriculture," Agricultural Systems, Elsevier, vol. 108(C), pages 1-9.
    5. White, Robin R., 2016. "Increasing energy and protein use efficiency improves opportunities to decrease land use, water use, and greenhouse gas emissions from dairy production," Agricultural Systems, Elsevier, vol. 146(C), pages 20-29.
    6. Godinot, O. & Carof, M. & Vertès, F. & Leterme, P., 2014. "SyNE: An improved indicator to assess nitrogen efficiency of farming systems," Agricultural Systems, Elsevier, vol. 127(C), pages 41-52.
    7. Mihailescu, E. & Ryan, W. & Murphy, P.N.C. & Casey, I.A. & Humphreys, J., 2015. "Economic impacts of nitrogen and phosphorus use efficiency on nineteen intensive grass-based dairy farms in the South of Ireland," Agricultural Systems, Elsevier, vol. 132(C), pages 121-132.
    8. Hogh-Jensen, Henning & Loges, Ralf & Jorgensen, Finn V. & Vinther, Finn P. & Jensen, Erik S., 2004. "An empirical model for quantification of symbiotic nitrogen fixation in grass-clover mixtures," Agricultural Systems, Elsevier, vol. 82(2), pages 181-194, November.
    9. Thomassen, M.A. & van Calker, K.J. & Smits, M.C.J. & Iepema, G.L. & de Boer, I.J.M., 2008. "Life cycle assessment of conventional and organic milk production in the Netherlands," Agricultural Systems, Elsevier, vol. 96(1-3), pages 95-107, March.
    10. Van Middelaar, C.E. & Berentsen, P.B.M. & Dijkstra, J. & De Boer, I.J.M., 2013. "Evaluation of a feeding strategy to reduce greenhouse gas emissions from dairy farming: The level of analysis matters," Agricultural Systems, Elsevier, vol. 121(C), pages 9-22.
    11. Huysveld, Sophie & Van linden, Veerle & De Meester, Steven & Peiren, Nico & Muylle, Hilde & Lauwers, Ludwig & Dewulf, Jo, 2015. "Resource use assessment of an agricultural system from a life cycle perspective – a dairy farm as case study," Agricultural Systems, Elsevier, vol. 135(C), pages 77-89.
    12. Oudshoorn, Frank W. & Sørensen, Claus Aage G. & de Boer, Imke I.J.M., 2011. "Economic and environmental evaluation of three goal-vision based scenarios for organic dairy farming in Denmark," Agricultural Systems, Elsevier, vol. 104(4), pages 315-325, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galloway, Craig & Conradie, Beatrice & Prozesky, Heidi & Esler, Karen, 2018. "Opportunities to improve sustainability on commercial pasture-based dairy farms by assessing environmental impact," Agricultural Systems, Elsevier, vol. 166(C), pages 1-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ledgard, Stewart F. & Wei, Sha & Wang, Xiaoqin & Falconer, Shelley & Zhang, Nannan & Zhang, Xiying & Ma, Lin, 2019. "Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations," Agricultural Water Management, Elsevier, vol. 213(C), pages 155-163.
    2. Lars Biernat & Friedhelm Taube & Ralf Loges & Christof Kluß & Thorsten Reinsch, 2020. "Nitrous Oxide Emissions and Methane Uptake from Organic and Conventionally Managed Arable Crop Rotations on Farms in Northwest Germany," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    3. Mack, Gabriele & Kohler, Andreas, 2017. "Short- and long-run policy evaluation: support for grassland-based milk production in Switzerland," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 261116, European Association of Agricultural Economists.
    4. Worden, David & Hailu, Getu, 2020. "Do genomic innovations enable an economic and environmental win-win in dairy production?," Agricultural Systems, Elsevier, vol. 181(C).
    5. Mack, Gabriele & Huber, Robert, 2017. "On-farm compliance costs and N surplus reduction of mixed dairy farms under grassland-based feeding systems," Agricultural Systems, Elsevier, vol. 154(C), pages 34-44.
    6. Mu, W. & Groen, E.A. & van Middelaar, C.E. & Bokkers, E.A.M. & Hennart, S. & Stilmant, D. & de Boer, I.J.M., 2017. "Benchmarking nutrient use efficiency of dairy farms: The effect of epistemic uncertainty," Agricultural Systems, Elsevier, vol. 156(C), pages 25-33.
    7. Moretti, Michele & De Boni, Annalisa & Roma, Rocco & Fracchiolla, Mariano & Van Passel, Steven, 2016. "Integrated assessment of agro-ecological systems: The case study of the “Alta Murgia” National park in Italy," Agricultural Systems, Elsevier, vol. 144(C), pages 144-155.
    8. Doltra, J. & Villar, A. & Moros, R. & Salcedo, G. & Hutchings, N.J. & Kristensen, I.S., 2018. "Forage management to improve on-farm feed production, nitrogen fluxes and greenhouse gas emissions from dairy systems in a wet temperate region," Agricultural Systems, Elsevier, vol. 160(C), pages 70-78.
    9. Delmotte, Sylvestre & Barbier, Jean-Marc & Mouret, Jean-Claude & Le Page, Christophe & Wery, Jacques & Chauvelon, Phillipe & Sandoz, Alain & Lopez Ridaura, Santiago, 2016. "Participatory integrated assessment of scenarios for organic farming at different scales in Camargue, France," Agricultural Systems, Elsevier, vol. 143(C), pages 147-158.
    10. Helena Wehmeyer & Annalyn H. de Guia & Melanie Connor, 2020. "Reduction of Fertilizer Use in South China—Impacts and Implications on Smallholder Rice Farmers," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    11. Meul, Marijke & Van Middelaar, Corina E. & de Boer, Imke J.M. & Van Passel, Steven & Fremaut, Dirk & Haesaert, Geert, 2014. "Potential of life cycle assessment to support environmental decision making at commercial dairy farms," Agricultural Systems, Elsevier, vol. 131(C), pages 105-115.
    12. Asci, Serhat & Borisova, Tatiana & VanSickle, John J., 2015. "Role of economics in developing fertilizer best management practices," Agricultural Water Management, Elsevier, vol. 152(C), pages 251-261.
    13. Blasi, E. & Passeri, N. & Franco, S. & Galli, A., 2016. "An ecological footprint approach to environmental–economic evaluation of farm results," Agricultural Systems, Elsevier, vol. 145(C), pages 76-82.
    14. Jongeneel, Roel & Polman, Nico & van der Ham, Corinda, 2014. "Costs and benefits associated with the externalities generated by Dutch agriculture," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182705, European Association of Agricultural Economists.
    15. Atanu Mukherjee & Emmanuel C. Omondi & Paul R. Hepperly & Rita Seidel & Wade P. Heller, 2020. "Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    16. Jan Willem Erisman & Allison Leach & Albert Bleeker & Brooke Atwell & Lia Cattaneo & James Galloway, 2018. "An Integrated Approach to a Nitrogen Use Efficiency (NUE) Indicator for the Food Production–Consumption Chain," Sustainability, MDPI, vol. 10(4), pages 1-29, March.
    17. Chad Lawley & Erik Lichtenberg & Doug Parker, 2009. "Biases in Nutrient Management Planning," Land Economics, University of Wisconsin Press, vol. 85(1), pages 186-200.
    18. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    19. Bonamigo, Andrei & Ferenhof, Helio Aisenberg & Forcellini, Fernando Antonio, 2017. "Dairy Ecosystem Barriers Exposed - A Case Study In A Family Production Unit At Western Santa Catarina, Brazil," Organizações Rurais e Agroindustriais/Rural and Agro-Industrial Organizations, Universidade Federal de Lavras, Departamento de Administracao e Economia, vol. 19(1), January.
    20. Matthew Houser, 2022. "Does adopting a nitrogen best management practice reduce nitrogen fertilizer rates?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(1), pages 79-94, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:157:y:2017:i:c:p:11-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.