IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v14y2018i2p18n5.html
   My bibliography  Save this article

A Spatio-Temporal Model and Inference Tools for Longitudinal Count Data on Multicolor Cell Growth

Author

Listed:
  • Qiao PuXue

    (The University of Melbourne, Melbourne, Australia)

  • Mølck Christina
  • Hollande Frédéric

    (The University of Melbourne, Melbourne, Australia)

  • Ferrari Davide

    (Free University of Bozen-Bolzano, Bolzano, Italy)

Abstract

Multicolor cell spatio-temporal image data have become important to investigate organ development and regeneration, malignant growth or immune responses by tracking different cell types both in vivo and in vitro. Statistical modeling of image data from common longitudinal cell experiments poses significant challenges due to the presence of complex spatio-temporal interactions between different cell types and difficulties related to measurement of single cell trajectories. Current analysis methods focus mainly on univariate cases, often not considering the spatio-temporal effects affecting cell growth between different cell populations. In this paper, we propose a conditional spatial autoregressive model to describe multivariate count cell data on the lattice, and develop inference tools. The proposed methodology is computationally tractable and enables researchers to estimate a complete statistical model of multicolor cell growth. Our methodology is applied on real experimental data where we investigate how interactions between cancer cells and fibroblasts affect their growth, which are normally present in the tumor microenvironment. We also compare the performance of our methodology to the multivariate conditional autoregressive (MCAR) model in both simulations and real data applications.

Suggested Citation

  • Qiao PuXue & Mølck Christina & Hollande Frédéric & Ferrari Davide, 2018. "A Spatio-Temporal Model and Inference Tools for Longitudinal Count Data on Multicolor Cell Growth," The International Journal of Biostatistics, De Gruyter, vol. 14(2), pages 1-18, November.
  • Handle: RePEc:bpj:ijbist:v:14:y:2018:i:2:p:18:n:5
    DOI: 10.1515/ijb-2018-0008
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2018-0008
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2018-0008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard A. Davis, 2003. "Observation-driven models for Poisson counts," Biometrika, Biometrika Trust, vol. 90(4), pages 777-790, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajae Azrak & Guy Mélard, 2021. "Asymptotic properties of conditional least-squares estimators for array time series," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 525-547, October.
    2. Paolo Gorgi, 2020. "Beta–negative binomial auto‐regressions for modelling integer‐valued time series with extreme observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1325-1347, December.
    3. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," AMSE Working Papers 1520, Aix-Marseille School of Economics, France.
    4. Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
    5. Zheng, Tingguo & Chen, Rong, 2017. "Dirichlet ARMA models for compositional time series," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 31-46.
    6. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
    7. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Maximum Likelihood Estimation for correctly Specified Generalized Autoregressive Score Models: Feedback Effects, Contraction Conditions and Asymptotic Properties," Tinbergen Institute Discussion Papers 14-074/III, Tinbergen Institute.
    8. Douc, R. & Doukhan, P. & Moulines, E., 2013. "Ergodicity of observation-driven time series models and consistency of the maximum likelihood estimator," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2620-2647.
    9. Kheifets, Igor & Velasco, Carlos, 2017. "New goodness-of-fit diagnostics for conditional discrete response models," Journal of Econometrics, Elsevier, vol. 200(1), pages 135-149.
    10. Víctor Enciso‐Mora & Peter Neal & T. Subba Rao, 2009. "Efficient order selection algorithms for integer‐valued ARMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 1-18, January.
    11. Giovanni Angelini & Giuseppe Cavaliere & Enzo D'Innocenzo & Luca De Angelis, 2022. "Time-Varying Poisson Autoregression," Papers 2207.11003, arXiv.org.
    12. Roman Liesenfeld & Ingmar Nolte & Winfried Pohlmeier, 2008. "Modelling financial transaction price movements: a dynamic integer count data model," Studies in Empirical Economics, in: Luc Bauwens & Winfried Pohlmeier & David Veredas (ed.), High Frequency Financial Econometrics, pages 167-197, Springer.
    13. Cem Cakmakli & Yasin Simsek, 2020. "Bridging the COVID-19 Data and the Epidemiological Model using Time Varying Parameter SIRD Model," Papers 2007.02726, arXiv.org, revised Feb 2021.
    14. Alzahrani, Naif & Neal, Peter & Spencer, Simon E.F. & McKinley, Trevelyan J. & Touloupou, Panayiota, 2018. "Model selection for time series of count data," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 33-44.
    15. Tingguo Zheng & Han Xiao & Rong Chen, 2022. "Generalized autoregressive moving average models with GARCH errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 125-146, January.
    16. F Blasques & P Gorgi & S J Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models ," Working Papers hal-01377971, HAL.
    17. Tianqing Liu & Xiaohui Yuan, 2013. "Random rounded integer-valued autoregressive conditional heteroskedastic process," Statistical Papers, Springer, vol. 54(3), pages 645-683, August.
    18. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    19. Vladimír Holý & Jan Zouhar, 2022. "Modelling time‐varying rankings with autoregressive and score‐driven dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1427-1450, November.
    20. Vurukonda Sathish & Siuli Mukhopadhyay & Rashmi Tiwari, 2022. "Autoregressive and moving average models for zero‐inflated count time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(2), pages 190-218, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:14:y:2018:i:2:p:18:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.