IDEAS home Printed from https://ideas.repec.org/a/bpj/apjrin/v4y2010i2n5.html
   My bibliography  Save this article

Survival Mixture Model for Credit Risk Analysis

Author

Listed:
  • Mo Leo S. F.

    (City University of Hong Kong)

  • Yau Kelvin K. W.

    (City University of Hong Kong)

Abstract

The survival mixture model, which is an extension of the ordinary survival model that allows the existence of a fraction of the borrowers to be risk-free, is applied to credit risk analysis. In a regression setting, the effect of borrowers' characteristics on both the risk-free probability and default risk can be assessed simultaneously. Using the C statistic as a measure of accuracy, the survival mixture model shows improved power to discriminate between good' and bad' customers, when compared with other commonly used statistical models for credit risk analysis. A simulation study is conducted to assess the performance of the proposed numerical estimation method. The survival mixture model not only concentrates on the time-to-default of the borrowers, it also predicts the probability of being risk-free. It provides additional information about the borrowers' default risk in relation to their characteristics, which assists the lending institutions to better manage credit risk.

Suggested Citation

  • Mo Leo S. F. & Yau Kelvin K. W., 2010. "Survival Mixture Model for Credit Risk Analysis," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 4(2), pages 1-20, July.
  • Handle: RePEc:bpj:apjrin:v:4:y:2010:i:2:n:5
    DOI: 10.2202/2153-3792.1061
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/2153-3792.1061
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/2153-3792.1061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wiginton, John C., 1980. "A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 757-770, September.
    2. Maria Stepanova & Lyn Thomas, 2002. "Survival Analysis Methods for Personal Loan Data," Operations Research, INFORMS, vol. 50(2), pages 277-289, April.
    3. Martin G. Larson & Gregg E. Dinse, 1985. "A Mixture Model for the Regression Analysis of Competing Risks Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(3), pages 201-211, November.
    4. Bart Baesens & Rudy Setiono & Christophe Mues & Jan Vanthienen, 2003. "Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation," Management Science, INFORMS, vol. 49(3), pages 312-329, March.
    5. A. C. Antonakis & M. E. Sfakianakis, 2009. "Assessing naive Bayes as a method for screening credit applicants," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(5), pages 537-545.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finlay, Steven, 2010. "Credit scoring for profitability objectives," European Journal of Operational Research, Elsevier, vol. 202(2), pages 528-537, April.
    2. B Baesens & T Van Gestel & M Stepanova & D Van den Poel & J Vanthienen, 2005. "Neural network survival analysis for personal loan data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1089-1098, September.
    3. Tang, Lingxiao & Cai, Fei & Ouyang, Yao, 2019. "Applying a nonparametric random forest algorithm to assess the credit risk of the energy industry in China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 563-572.
    4. L C Thomas, 2010. "Consumer finance: challenges for operational research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 41-52, January.
    5. Ting Sun & Miklos A. Vasarhelyi, 2018. "Predicting credit card delinquencies: An application of deep neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 25(4), pages 174-189, October.
    6. Yu, Lean & Yao, Xiao & Zhang, Xiaoming & Yin, Hang & Liu, Jia, 2020. "A novel dual-weighted fuzzy proximal support vector machine with application to credit risk analysis," International Review of Financial Analysis, Elsevier, vol. 71(C).
    7. Wycinka Ewa, 2019. "Competing Risk Models of Default in the Presence of Early Repayments," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 99-120, June.
    8. Guo, Yanhong & Zhou, Wenjun & Luo, Chunyu & Liu, Chuanren & Xiong, Hui, 2016. "Instance-based credit risk assessment for investment decisions in P2P lending," European Journal of Operational Research, Elsevier, vol. 249(2), pages 417-426.
    9. Justin Sirignano & Kay Giesecke, 2019. "Risk Analysis for Large Pools of Loans," Management Science, INFORMS, vol. 65(1), pages 107-121, January.
    10. Hoffmann, F. & Baesens, B. & Mues, C. & Van Gestel, T. & Vanthienen, J., 2007. "Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 540-555, February.
    11. Nguyen Hoang Thuan & Pedro Antunes & David Johnstone, 2016. "Factors influencing the decision to crowdsource: A systematic literature review," Information Systems Frontiers, Springer, vol. 18(1), pages 47-68, February.
    12. Alexandre, Michel & Antônio Silva Brito, Giovani & Cotrim Martins, Theo, 2017. "Default contagion among credit modalities: evidence from Brazilian data," MPRA Paper 76859, University Library of Munich, Germany.
    13. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    14. ter Braak, Anne & Geyskens, Inge & Dekimpe, Marnik G., 2014. "Taking private labels upmarket: Empirical generalizations on category drivers of premium private label introductions," Journal of Retailing, Elsevier, vol. 90(2), pages 125-140.
    15. Lu Gao & Kanshukan Rajaratnam & Peter Beling, 2016. "Loan origination decisions using a multinomial scorecard," Annals of Operations Research, Springer, vol. 243(1), pages 199-210, August.
    16. Do, Hung Xuan & Rösch, Daniel & Scheule, Harald, 2018. "Predicting loss severities for residential mortgage loans: A three-step selection approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 246-259.
    17. Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
    18. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    19. Ma, T. & Fraser-Mackenzie, P.A.F. & Sung, M. & Kansara, A.P. & Johnson, J.E.V., 2022. "Are the least successful traders those most likely to exit the market? A survival analysis contribution to the efficient market debate," European Journal of Operational Research, Elsevier, vol. 299(1), pages 330-345.
    20. Kwon, He-Boong & Lee, Jooh, 2019. "Exploring the differential impact of environmental sustainability, operational efficiency, and corporate reputation on market valuation in high-tech-oriented firms," International Journal of Production Economics, Elsevier, vol. 211(C), pages 1-14.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:apjrin:v:4:y:2010:i:2:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.