IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v11y2022i1ne414.html
   My bibliography  Save this article

Performance and future directions of transition metal sulfide‐based electrode materials towards supercapacitor/supercapattery

Author

Listed:
  • Arya Das
  • Benjamin Raj
  • Mamata Mohapatra
  • Shuang Ma Andersen
  • Suddhasatwa Basu

Abstract

Advanced and sustainable energy storage technologies with tailorable electrochemically active materials platform are the present research dominancy toward an urgent global need for electrical vehicles and portable electronics. Moreover, intensive efforts are given to screen the widely available low‐cost materials with a focus to achieve superior electrochemical performance for the fabrication of energy storage devices. Transition metal‐based sulfides have prodigious technological credibility due to their compositional‐ and morphological‐based tunable electrochemical properties. Here the significant advances and present state‐of‐the‐art of such assured materials in different energy storage devices are discussed. Assessment of the intensive work invested in the progress of transition metals such as V, Mn, Fe, Co, Ni, Cu, Zn Mo, and W based sulfides along with their structural/compositional engineering and addressable aspects for electrochemical performance enhancement are highlighted. Additionally, discussions on critical strategies for decisive mechanistic and kinetic views for charge storage phenomena with key challenges, such as volume expansions, low stability, and sluggish kinetics, are discussed. Finally, the challenges and future prospects demands for strategic approaches of such materials with prominence in futuristic directions are concluded. This article is categorized under: Energy Efficiency > Science and Materials Energy Research & Innovation > Science and Materials

Suggested Citation

  • Arya Das & Benjamin Raj & Mamata Mohapatra & Shuang Ma Andersen & Suddhasatwa Basu, 2022. "Performance and future directions of transition metal sulfide‐based electrode materials towards supercapacitor/supercapattery," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
  • Handle: RePEc:bla:wireae:v:11:y:2022:i:1:n:e414
    DOI: 10.1002/wene.414
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.414
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Muzaffar, Aqib & Ahamed, M. Basheer & Deshmukh, Kalim & Thirumalai, Jagannathan, 2019. "A review on recent advances in hybrid supercapacitors: Design, fabrication and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 123-145.
    2. Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Xiong, Binyu & Tang, Jinrui & Su, Yixin & Wang, Yu, 2020. "Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Liang & Peirong Li & Yue Zhao & Supeng Chen & Jixiang Yin & Yingchun Lyu & Qiang Li & Qinghao Li, 2023. "Investigation on the Origin of Sluggish Anionic Redox Kinetics in Cation-Disordered Cathode," Energies, MDPI, vol. 16(18), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Jiang, Zhuosheng & Zhai, Shengli & Huang, Mingzhi & Songsiriritthigul, Prayoon & Aung, Su Htike & Oo, Than Zaw & Luo, Min & Chen, Fuming, 2021. "3D carbon nanocones/metallic MoS2 nanosheet electrodes towards flexible supercapacitors for wearable electronics," Energy, Elsevier, vol. 227(C).
    3. Ganesan Sriram & Mahaveer Kurkuri & Tae Hwan Oh, 2023. "Recent Trends in Highly Porous Structured Carbon Electrodes for Supercapacitor Applications: A Review," Energies, MDPI, vol. 16(12), pages 1-36, June.
    4. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    6. Chenchen Ji & Haonan Cui & Hongyu Mi & Shengchun Yang, 2021. "Applications of 2D MXenes for Electrochemical Energy Conversion and Storage," Energies, MDPI, vol. 14(23), pages 1-23, December.
    7. Vykhodtsev, Anton V. & Jang, Darren & Wang, Qianpu & Rosehart, William & Zareipour, Hamidreza, 2022. "A review of modelling approaches to characterize lithium-ion battery energy storage systems in techno-economic analyses of power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    8. Krishnan, Syam G. & Arulraj, Arunachalam & Khalid, Mohammad & Reddy, M.V. & Jose, Rajan, 2021. "Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Castillejo-Cuberos, A. & Cardemil, J.M. & Escobar, R., 2023. "Techno-economic assessment of photovoltaic plants considering high temporal resolution and non-linear dynamics of battery storage," Applied Energy, Elsevier, vol. 334(C).
    10. Eklas Hossain & Hossain Mansur Resalat Faruque & Md. Samiul Haque Sunny & Naeem Mohammad & Nafiu Nawar, 2020. "A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects," Energies, MDPI, vol. 13(14), pages 1-127, July.
    11. Qaisar Abbas & Mojtaba Mirzaeian & Michael R.C. Hunt & Peter Hall & Rizwan Raza, 2020. "Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems," Energies, MDPI, vol. 13(21), pages 1-41, November.
    12. Wang, Bin & Wang, Chaohui & Wang, Zhiyu & Ni, Siliang & Yang, Yixin & Tian, Pengyu, 2023. "Adaptive state of energy evaluation for supercapacitor in emergency power system of more-electric aircraft," Energy, Elsevier, vol. 263(PA).
    13. Mathews, Ian & Xu, Bolun & He, Wei & Barreto, Vanessa & Buonassisi, Tonio & Peters, Ian Marius, 2020. "Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging," Applied Energy, Elsevier, vol. 269(C).
    14. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Mihai Machedon-Pisu & Paul Nicolae Borza, 2019. "Are Personal Electric Vehicles Sustainable? A Hybrid E-Bike Case Study," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    16. Dou, Shumei & Li, Ping & Tan, Dan & Li, Huiqin & Ren, Lijun & Wei, Fenyan, 2021. "Synthesis and capacitance performances of Ni–Mn-Oxides as electrode materials for high-performance supercapacitors," Energy, Elsevier, vol. 227(C).
    17. Aissa Benhammou & Mohammed Amine Hartani & Hamza Tedjini & Hegazy Rezk & Mujahed Al-Dhaifallah, 2023. "Improvement of Autonomy, Efficiency, and Stress of Fuel Cell Hybrid Electric Vehicle System Using Robust Controller," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    18. Hou, Qingchun & Yu, Yanghao & Du, Ershun & He, Hongjie & Zhang, Ning & Kang, Chongqing & Liu, Guojing & Zhu, Huan, 2020. "Embedding scrapping criterion and degradation model in optimal operation of peak-shaving lithium-ion battery energy storage," Applied Energy, Elsevier, vol. 278(C).
    19. Sayfutdinov, Timur & Vorobev, Petr, 2022. "Optimal utilization strategy of the LiFePO4 battery storage," Applied Energy, Elsevier, vol. 316(C).
    20. Changshi, Liu, 2021. "Reliable and precise evaluation energy-transfer and efficiency of super-capacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:11:y:2022:i:1:n:e414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.