IDEAS home Printed from https://ideas.repec.org/a/bla/tvecsg/v109y2018i1p109-128.html
   My bibliography  Save this article

The Spatial Structure of High Speed Railways and Urban Networks in China: A Flow Approach

Author

Listed:
  • Haoran Yang
  • Martin Dijst
  • Patrick Witte
  • Hans Van Ginkel
  • Weiling Yang

Abstract

The high speed railway (HSR) has played a crucial role in the regional integration of urban networks in China. This paper analyses HSR passenger flows instead of commonly†used time schedules for measuring different polycentricity in urban networks. Using 2013 origin/destination (O/D) passenger flow data, we analyse the spatial configurations of 99 HSR cities at the national scale in China. In addition, we compare the spatial configurations of three regional urban networks: the Pearl River Delta, the Yangzi River Delta and the Bohai Rim. The outcomes show that the three functional regions connected by HSR are the most dominant polycentric regions in China and that the Bohai Rim is less hierarchical than the other two. We conclude that the comprehensive Chinese HSR networks are largely polycentric, especially in the central and eastern regions.

Suggested Citation

  • Haoran Yang & Martin Dijst & Patrick Witte & Hans Van Ginkel & Weiling Yang, 2018. "The Spatial Structure of High Speed Railways and Urban Networks in China: A Flow Approach," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 109(1), pages 109-128, February.
  • Handle: RePEc:bla:tvecsg:v:109:y:2018:i:1:p:109-128
    DOI: 10.1111/tesg.12269
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/tesg.12269
    Download Restriction: no

    File URL: https://libkey.io/10.1111/tesg.12269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Haoran & Dobruszkes, Frédéric & Wang, Jiaoe & Dijst, Martin & Witte, Patrick, 2018. "Comparing China's urban systems in high-speed railway and airline networks," Journal of Transport Geography, Elsevier, vol. 68(C), pages 233-244.
    2. Mengzhi Zou & Changyou Li & Yanni Xiong, 2022. "Analysis of Coupling Coordination Relationship between the Accessibility and Economic Linkage of a High-Speed Railway Network Case Study in Hunan, China," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    3. Huang, Yan & Zong, Huiming, 2022. "The intercity railway connections in China: A comparative analysis of high-speed train and conventional train services," Transport Policy, Elsevier, vol. 120(C), pages 89-103.
    4. Wang, Lei, 2018. "High-speed rail services development and regional accessibility restructuring in megaregions: A case of the Yangtze River Delta, China," Transport Policy, Elsevier, vol. 72(C), pages 34-44.
    5. Wang, Jiaoe & Du, Delin & Huang, Jie, 2020. "Inter-city connections in China: High-speed train vs. inter-city coach," Journal of Transport Geography, Elsevier, vol. 82(C).
    6. Zhu, Xinhua & Dai, Chun & Wei, Yigang, 2022. "Does the opening of high-speed railway improve air quality? Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    7. Hu, Zhibin & Wu, Guangdong & Han, Yilong & Niu, Yanliang, 2023. "Unraveling the dynamic changes of high-speed rail network with urban development: Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    8. Qiufang Shi & Xiaoyong Yan & Bin Jia & Ziyou Gao, 2020. "Freight Data-Driven Research on Evaluation Indexes for Urban Agglomeration Development Degree," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    9. Wang, Jiaoe & Huang, Jie & Jing, Yue, 2020. "Competition between high-speed trains and air travel in China: From a spatial to spatiotemporal perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 62-78.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:tvecsg:v:109:y:2018:i:1:p:109-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0040-747X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.