IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v74y2020i3p324-341.html
   My bibliography  Save this article

Modeling node heterogeneity in latent space models for multidimensional networks

Author

Listed:
  • Silvia D'Angelo
  • Marco Alfò
  • Thomas Brendan Murphy

Abstract

Multidimensional network data can have different levels of complexity, as nodes may be characterized by heterogeneous individual‐specific features, which may vary across the networks. This article introduces a class of models for multidimensional network data, where different levels of heterogeneity within and between networks can be considered. The proposed framework is developed in the family of latent space models, and it aims to distinguish symmetric relations between the nodes and node‐specific features. Model parameters are estimated via a Markov Chain Monte Carlo algorithm. Simulated data and an application to a real example, on fruits import/export data, are used to illustrate and comment on the performance of the proposed models.

Suggested Citation

  • Silvia D'Angelo & Marco Alfò & Thomas Brendan Murphy, 2020. "Modeling node heterogeneity in latent space models for multidimensional networks," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 324-341, August.
  • Handle: RePEc:bla:stanee:v:74:y:2020:i:3:p:324-341
    DOI: 10.1111/stan.12209
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12209
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hoff, Peter D., 2011. "Hierarchical multilinear models for multiway data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 530-543, January.
    2. Daniele Durante & David B. Dunson & Joshua T. Vogelstein, 2017. "Rejoinder: Nonparametric Bayes Modeling of Populations of Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1547-1552, October.
    3. Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
    4. Daniel K. Sewell & Yuguo Chen, 2015. "Latent Space Models for Dynamic Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1646-1657, December.
    5. Jing Zhou & Anirban Bhattacharya & Amy H. Herring & David B. Dunson, 2015. "Bayesian Factorizations of Big Sparse Tensors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1562-1576, December.
    6. Daniele Durante & David B. Dunson & Joshua T. Vogelstein, 2017. "Nonparametric Bayes Modeling of Populations of Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1516-1530, October.
    7. Hunter, David R. & Goodreau, Steven M. & Handcock, Mark S., 2008. "Goodness of Fit of Social Network Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 248-258, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sosa, Juan & Betancourt, Brenda, 2022. "A latent space model for multilayer network data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linardi, Fernando & Diks, Cees & van der Leij, Marco & Lazier, Iuri, 2020. "Dynamic interbank network analysis using latent space models," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    2. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    3. Chung, Jaewon & Bridgeford, Eric & Arroyo, Jesus & Pedigo, Benjamin D. & Saad-Eldin, Ali & Gopalakrishnan, Vivek & Xiang, Liang & Priebe, Carey E. & Vogelstein, Joshua T., 2020. "Statistical Connectomics," OSF Preprints ek4n3, Center for Open Science.
    4. Lee, Jihui & Li, Gen & Wilson, James D., 2020. "Varying-coefficient models for dynamic networks," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    5. Babkin, Sergii & Stewart, Jonathan R. & Long, Xiaochen & Schweinberger, Michael, 2020. "Large-scale estimation of random graph models with local dependence," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    6. Joshua Daniel Loyal & Yuguo Chen, 2020. "Statistical Network Analysis: A Review with Applications to the Coronavirus Disease 2019 Pandemic," International Statistical Review, International Statistical Institute, vol. 88(2), pages 419-440, August.
    7. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    8. Cornelius Fritz & Michael Lebacher & Göran Kauermann, 2020. "Tempus volat, hora fugit: A survey of tie‐oriented dynamic network models in discrete and continuous time," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 275-299, August.
    9. Daniel Felix Ahelegbey & Luis Carvalho & Eric D. Kolaczyk, 2020. "A Bayesian Covariance Graph And Latent Position Model For Multivariate Financial Time Series," DEM Working Papers Series 181, University of Pavia, Department of Economics and Management.
    10. Cai, Wei & Guan, Guoyu & Pan, Rui & Zhu, Xuening & Wang, Hansheng, 2018. "Network linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 32-44.
    11. Piero Mazzarisi & Paolo Barucca & Fabrizio Lillo & Daniele Tantari, 2017. "A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market," Papers 1801.00185, arXiv.org.
    12. Teague R. Henry & Kathleen M. Gates & Mitchell J. Prinstein & Douglas Steinley, 2020. "Modeling Heterogeneous Peer Assortment Effects Using Finite Mixture Exponential Random Graph Models," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 8-34, March.
    13. Adrian E. Raftery, 2017. "Comment: Extending the Latent Position Model for Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1531-1534, October.
    14. Yingda Lu & Kinshuk Jerath & Param Vir Singh, 2013. "The Emergence of Opinion Leaders in a Networked Online Community: A Dyadic Model with Time Dynamics and a Heuristic for Fast Estimation," Management Science, INFORMS, vol. 59(8), pages 1783-1799, August.
    15. Sosa, Juan & Betancourt, Brenda, 2022. "A latent space model for multilayer network data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    16. Riccardo Rastelli & Michael Fop, 2020. "A stochastic block model for interaction lengths," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 485-512, June.
    17. Michael Braun & André Bonfrer, 2011. "Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes," Marketing Science, INFORMS, vol. 30(3), pages 513-531, 05-06.
    18. Federica Bianchi & Francesco Bartolucci & Stefano Peluso & Antonietta Mira, 2020. "Longitudinal networks of dyadic relationships using latent trajectories: evidence from the European interbank market," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 711-739, August.
    19. Patacchini, Eleonora & Hsieh, Chih-Sheng & Lin, Xu, 2019. "Social Interaction Methods," CEPR Discussion Papers 14141, C.E.P.R. Discussion Papers.
    20. Amanda M. Y. Chu & Thomas W. C. Chan & Mike K. P. So & Wing-Keung Wong, 2021. "Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model," IJERPH, MDPI, vol. 18(6), pages 1-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:74:y:2020:i:3:p:324-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.