IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v47y2020i4p1401-1464.html
   My bibliography  Save this article

Local asymptotic properties for Cox‐Ingersoll‐Ross process with discrete observations

Author

Listed:
  • Mohamed Ben Alaya
  • Ahmed Kebaier
  • Ngoc Khue Tran

Abstract

In this paper, we consider a one‐dimensional Cox‐Ingersoll‐Ross (CIR) process whose drift coefficient depends on unknown parameters. Considering the process discretely observed at high frequency, we prove the local asymptotic normality property in the subcritical case, the local asymptotic quadraticity in the critical case, and the local asymptotic mixed normality property in the supercritical case. To obtain these results, we use the Malliavin calculus techniques developed recently for CIR process together with the estimation for positive and negative polynomial moments of the CIR process. In this study, we require the same conditions of high frequency and infinite horizon as in the case of ergodic diffusions with globally Lipschitz coefficients studied earlier in the literature. However, in the non‐ergodic cases, additional assumptions on the decreasing rate are required due to the fact that the square root diffusion coefficient of the CIR process is not regular enough.

Suggested Citation

  • Mohamed Ben Alaya & Ahmed Kebaier & Ngoc Khue Tran, 2020. "Local asymptotic properties for Cox‐Ingersoll‐Ross process with discrete observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1401-1464, December.
  • Handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1401-1464
    DOI: 10.1111/sjos.12494
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12494
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Davis, Mark H.A. & Johansson, Martin P., 2006. "Malliavin Monte Carlo Greeks for jump diffusions," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 101-129, January.
    2. Christa Cuchiero & Damir Filipovi'c & Eberhard Mayerhofer & Josef Teichmann, 2009. "Affine processes on positive semidefinite matrices," Papers 0910.0137, arXiv.org, revised Apr 2011.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Ngoc Khue Tran, 2017. "LAN property for an ergodic Ornstein–Uhlenbeck process with Poisson jumps," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(16), pages 7942-7968, August.
    5. Aurélien Alfonsi, 2015. "Affine Diffusions and Related Processes: Simulation, Theory and Applications," Post-Print hal-03127212, HAL.
    6. Jorge A. León & Reyla Navarro & David Nualart, 2003. "An Anticipating Calculus Approach to the Utility Maximization of an Insider," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 171-185, January.
    7. Ludger Overbeck, 1998. "Estimation for Continuous Branching Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 111-126, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    2. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    3. Alfonsi, Aurélien & Kebaier, Ahmed & Rey, Clément, 2016. "Maximum likelihood estimation for Wishart processes," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3243-3282.
    4. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2015. "Asymptotic behavior of maximum likelihood estimators for a jump-type Heston model," Papers 1509.08869, arXiv.org, revised May 2018.
    5. Abdelkoddousse Ahdida & Aur'elien Alfonsi & Ernesto Palidda, 2014. "Smile with the Gaussian term structure model," Papers 1412.7412, arXiv.org, revised Nov 2015.
    6. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2016. "Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process based on continuous time observations," Papers 1609.05865, arXiv.org, revised Aug 2017.
    7. Friesen, Martin & Jin, Peng & Rüdiger, Barbara, 2020. "Existence of densities for multi-type continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5426-5452.
    8. Chiarella, Carl & Hsiao, Chih-Ying & Tô, Thuy-Duong, 2016. "Stochastic correlation and risk premia in term structure models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 59-78.
    9. Eduardo Abi Jaber, 2020. "The Laplace transform of the integrated Volterra Wishart process," Working Papers hal-02367200, HAL.
    10. Micha{l} Barski & Rafa{l} {L}ochowski, 2024. "Affine term structure models driven by independent L\'evy processes," Papers 2402.07503, arXiv.org.
    11. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    12. Nicole Branger & Matthias Muck & Stefan Weisheit, 2019. "Correlation risk and international portfolio choice," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 128-146, January.
    13. repec:uts:finphd:41 is not listed on IDEAS
    14. Eduardo Abi Jaber, 2019. "The Laplace transform of the integrated Volterra Wishart process," Papers 1911.07719, arXiv.org, revised Jun 2020.
    15. Micha{l} Barski & Rafa{l} {L}ochowski, 2023. "Classification and calibration of affine models driven by independent L\'evy processes," Papers 2303.08477, arXiv.org.
    16. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02367200, HAL.
    17. Richter, Anja, 2014. "Explicit solutions to quadratic BSDEs and applications to utility maximization in multivariate affine stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3578-3611.
    18. Beáta Bolyog & Gyula Pap, 2019. "On conditional least squares estimation for affine diffusions based on continuous time observations," Statistical Inference for Stochastic Processes, Springer, vol. 22(1), pages 41-75, April.
    19. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 309-348, January.
    20. Sebastien Valeyre, 2020. "Refined model of the covariance/correlation matrix between securities," Papers 2001.08911, arXiv.org.
    21. Mesias Alfeus, 2019. "Stochastic Modelling of New Phenomena in Financial Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2019.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1401-1464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.