IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v32y2022i3p907-940.html
   My bibliography  Save this article

Consistent time‐homogeneous modeling of SPX and VIX derivatives

Author

Listed:
  • Andrew Papanicolaou

Abstract

This paper shows how to recover a stochastic volatility model (SVM) from a market model of the VIX futures term structure. Market models have more flexibility for fitting of curves than do SVMs, and therefore are better suited for pricing VIX futures and VIX derivatives. But the VIX itself is a derivative of the S&P500 (SPX) and it is common practice to price SPX derivatives using an SVM. Therefore, consistent modeling for both SPX and VIX should involve an SVM that can be obtained by inverting the market model. This paper's main result is a method for the recovery of a stochastic volatility function by solving an inverse problem where the input is the VIX function given by a market model. Analysis will show conditions necessary for there to be a unique solution to this inverse problem. The models are consistent if the recovered volatility function is non‐negative. Examples are presented to illustrate the theory, to highlight the issue of negativity in solutions, and to show the potential for inconsistency in non‐Markov settings.

Suggested Citation

  • Andrew Papanicolaou, 2022. "Consistent time‐homogeneous modeling of SPX and VIX derivatives," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 907-940, July.
  • Handle: RePEc:bla:mathfi:v:32:y:2022:i:3:p:907-940
    DOI: 10.1111/mafi.12348
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12348
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    2. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing, vol. 16(1), pages 27-48, January.
    3. Lin, Yueh-Neng & Chang, Chien-Hung, 2010. "Consistent modeling of S&P 500 and VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2302-2319, November.
    4. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    7. Christian Bayer & Jim Gatheral & Morten Karlsmark, 2013. "Fast Ninomiya--Victoir calibration of the double-mean-reverting model," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1813-1829, November.
    8. J.-P. Fouque & Y. F. Saporito, 2018. "Heston stochastic vol-of-vol model for joint calibration of VIX and S&P 500 options," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 1003-1016, June.
    9. Withers, C. S., 2000. "A simple expression for the multivariate Hermite polynomials," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 165-169, April.
    10. M. Avellaneda & A. Papanicolaou, 2019. "Statistics Of Vix Futures And Applications To Trading Volatility Exchange-Traded Products," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-30, February.
    11. Rama Cont & Thomas Kokholm, 2013. "A Consistent Pricing Model For Index Options And Volatility Derivatives," Post-Print hal-00801536, HAL.
    12. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure1," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72, January.
    13. Pacati, Claudio & Pompa, Gabriele & Renò, Roberto, 2018. "Smiling twice: The Heston++ model," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 185-206.
    14. Gabriel Drimus & Walter Farkas, 2013. "Local volatility of volatility for the VIX market," Review of Derivatives Research, Springer, vol. 16(3), pages 267-293, October.
    15. A. Papanicolaou, 2016. "Analysis of VIX Markets with a Time-Spread Portfolio," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 374-408, September.
    16. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    17. Andrew Papanicolaou & Ronnie Sircar, 2014. "A regime-switching Heston model for VIX and S&P 500 implied volatilities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1811-1827, October.
    18. Antoine Jacquier & Claude Martini & Aitor Muguruza, 2018. "On VIX futures in the rough Bergomi model," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 45-61, January.
    19. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Papanicolaou, 2018. "Consistent Time-Homogeneous Modeling of SPX and VIX Derivatives," Papers 1812.05859, arXiv.org, revised Mar 2022.
    2. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    3. Andrea Barletta & Elisa Nicolato & Stefano Pagliarani, 2019. "The short‐time behavior of VIX‐implied volatilities in a multifactor stochastic volatility framework," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 928-966, July.
    4. Antoine Jacquier & Aitor Muguruza & Alexandre Pannier, 2021. "Rough multifactor volatility for SPX and VIX options," Papers 2112.14310, arXiv.org, revised Nov 2023.
    5. Julien Guyon, 2020. "Inversion of convex ordering in the VIX market," Quantitative Finance, Taylor & Francis Journals, vol. 20(10), pages 1597-1623, October.
    6. Lech A. Grzelak, 2022. "On Randomization of Affine Diffusion Processes with Application to Pricing of Options on VIX and S&P 500," Papers 2208.12518, arXiv.org.
    7. Ivan Guo & Gregoire Loeper & Jan Obloj & Shiyi Wang, 2020. "Joint Modelling and Calibration of SPX and VIX by Optimal Transport," Papers 2004.02198, arXiv.org, revised Sep 2021.
    8. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles," Papers 2212.10917, arXiv.org, revised May 2023.
    9. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org.
    10. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2023. "The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles," Working Papers hal-03909334, HAL.
    11. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching stochastic volatility model: estimation and calibration to VIX options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(1), pages 38-75, January.
    12. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching Stochastic Volatility Model : Estimation and Calibration to VIX options," Working Papers hal-01212018, HAL.
    13. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Working Papers hal-03902513, HAL.
    14. Pacati, Claudio & Pompa, Gabriele & Renò, Roberto, 2018. "Smiling twice: The Heston++ model," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 185-206.
    15. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.
    16. Jaegi Jeon & Geonwoo Kim & Jeonggyu Huh, 2019. "Consistent and Efficient Pricing of SPX and VIX Options under Multiscale Stochastic Volatility," Papers 1909.10187, arXiv.org.
    17. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    18. Alexander Badran & Beniamin Goldys, 2015. "A Market Model for VIX Futures," Papers 1504.00428, arXiv.org.
    19. Andrea Barletta & Paolo Santucci de Magistris & Francesco Violante, 2016. "Retrieving Risk-Neutral Densities Embedded in VIX Options: a Non-Structural Approach," CREATES Research Papers 2016-20, Department of Economics and Business Economics, Aarhus University.
    20. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:32:y:2022:i:3:p:907-940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.