IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v71y2022i5p1137-1157.html
   My bibliography  Save this article

Assessing predictive discrimination performance of biomarkers in the presence of treatment‐induced dependent censoring

Author

Listed:
  • Cuihong Zhang
  • Jing Ning
  • Steven H. Belle
  • Robert H. Squires
  • Jianwen Cai
  • Ruosha Li

Abstract

In medical studies, some therapeutic decisions could lead to dependent censoring for the survival outcome of interest. This is exemplified by a study of paediatric acute liver failure, where death was subject to dependent censoring due to liver transplantation. Existing methods for assessing the predictive performance of biomarkers often pose the independent censoring assumption and are thus not applicable. In this work, we propose to tackle the dependence between the failure event and dependent censoring event using auxiliary information in multiple longitudinal risk factors. We propose estimators of sensitivity, specificity and area under curve, to discern the predictive power of biomarkers for the failure event by removing the disturbance of dependent censoring. Point estimation and inferential procedures were developed by adopting the joint modelling framework. The proposed methods performed satisfactorily in extensive simulation studies. We applied them to examine the predictive value of various biomarkers and risk scores for mortality in the motivating example.

Suggested Citation

  • Cuihong Zhang & Jing Ning & Steven H. Belle & Robert H. Squires & Jianwen Cai & Ruosha Li, 2022. "Assessing predictive discrimination performance of biomarkers in the presence of treatment‐induced dependent censoring," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1137-1157, November.
  • Handle: RePEc:bla:jorssc:v:71:y:2022:i:5:p:1137-1157
    DOI: 10.1111/rssc.12571
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12571
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    2. James M. Robins & Dianne M. Finkelstein, 2000. "Correcting for Noncompliance and Dependent Censoring in an AIDS Clinical Trial with Inverse Probability of Censoring Weighted (IPCW) Log-Rank Tests," Biometrics, The International Biometric Society, vol. 56(3), pages 779-788, September.
    3. Yi‐Hau Chen, 2010. "Semiparametric marginal regression analysis for dependent competing risks under an assumed copula," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 235-251, March.
    4. Lu Tian & Tianxi Cai & Els Goetghebeur & L. J. Wei, 2007. "Model evaluation based on the sampling distribution of estimated absolute prediction error," Biometrika, Biometrika Trust, vol. 94(2), pages 297-311.
    5. Ruosha Li & Limin Peng, 2017. "Assessing quantile prediction with censored quantile regression models," Biometrics, The International Biometric Society, vol. 73(2), pages 517-528, June.
    6. Yingye Zheng & Tianxi Cai & Yuying Jin & Ziding Feng, 2012. "Evaluating Prognostic Accuracy of Biomarkers under Competing Risk," Biometrics, The International Biometric Society, vol. 68(2), pages 388-396, June.
    7. Xuelin Huang & Nan Zhang, 2008. "Regression Survival Analysis with an Assumed Copula for Dependent Censoring: A Sensitivity Analysis Approach," Biometrics, The International Biometric Society, vol. 64(4), pages 1090-1099, December.
    8. Rizopoulos, Dimitris, 2010. "JM: An R Package for the Joint Modelling of Longitudinal and Time-to-Event Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i09).
    9. Patrick J. Heagerty & Thomas Lumley & Margaret S. Pepe, 2000. "Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker," Biometrics, The International Biometric Society, vol. 56(2), pages 337-344, June.
    10. Ming Wang & Qi Long, 2016. "Addressing issues associated with evaluating prediction models for survival endpoints based on the concordance statistic," Biometrics, The International Biometric Society, vol. 72(3), pages 897-906, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    2. Marlena Maziarz & Patrick Heagerty & Tianxi Cai & Yingye Zheng, 2017. "On longitudinal prediction with time-to-event outcome: Comparison of modeling options," Biometrics, The International Biometric Society, vol. 73(1), pages 83-93, March.
    3. Weining Shen & Jing Ning & Ying Yuan, 2015. "A direct method to evaluate the time-dependent predictive accuracy for biomarkers," Biometrics, The International Biometric Society, vol. 71(2), pages 439-449, June.
    4. Lisa M. McCrink & Adele H. Marshall & Karen J. Cairns, 2013. "Advances in Joint Modelling: A Review of Recent Developments with Application to the Survival of End Stage Renal Disease Patients," International Statistical Review, International Statistical Institute, vol. 81(2), pages 249-269, August.
    5. Deresa, Negera Wakgari & Van Keilegom, Ingrid, 2020. "A multivariate normal regression model for survival data subject to different types of dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    6. Sangbum Choi & Xuelin Huang, 2014. "Maximum likelihood estimation of semiparametric mixture component models for competing risks data," Biometrics, The International Biometric Society, vol. 70(3), pages 588-598, September.
    7. Deresa, N.W. & Van Keilegom, I. & Antonio, K., 2022. "Copula-based inference for bivariate survival data with left truncation and dependent censoring," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 1-21.
    8. Paul Blanche & Cécile Proust-Lima & Lucie Loubère & Claudine Berr & Jean-François Dartigues & Hélène Jacqmin-Gadda, 2015. "Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks," Biometrics, The International Biometric Society, vol. 71(1), pages 102-113, March.
    9. Kamaryn T. Tanner & Linda D. Sharples & Rhian M. Daniel & Ruth H. Keogh, 2021. "Dynamic survival prediction combining landmarking with a machine learning ensemble: Methodology and empirical comparison," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 3-30, January.
    10. Zhang, Cuihong & Ning, Jing & Cai, Jianwen & Squires, James E. & Belle, Steven H. & Li, Ruosha, 2024. "Dynamic risk score modeling for multiple longitudinal risk factors and survival," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    11. Liang Li & Sheng Luo & Bo Hu & Tom Greene, 2017. "Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 357-378, December.
    12. Jessica Gronsbell & Molei Liu & Lu Tian & Tianxi Cai, 2022. "Efficient evaluation of prediction rules in semi‐supervised settings under stratified sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1353-1391, September.
    13. Kim, Dongwoo, 2023. "Partially identifying competing risks models: An application to the war on cancer," Journal of Econometrics, Elsevier, vol. 234(2), pages 536-564.
    14. Chia-Hui Huang, 2019. "Mixture regression models for the gap time distributions and illness–death processes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 168-188, January.
    15. Xavier Piulachs & Ramon Alemany & Montserrat Guillen, 2014. "A joint longitudinal and survival model with health care usage for insured elderly," Working Papers 2014-07, Universitat de Barcelona, UB Riskcenter.
    16. Schmid, Matthias & Tutz, Gerhard & Welchowski, Thomas, 2018. "Discrimination measures for discrete time-to-event predictions," Econometrics and Statistics, Elsevier, vol. 7(C), pages 153-164.
    17. Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
    18. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    19. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    20. Ruosha Li & Jing Ning & Ziding Feng, 2022. "Estimation and inference of predictive discrimination for survival outcome risk prediction models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 219-240, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:5:p:1137-1157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.