IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v184y2021i1p3-30.html
   My bibliography  Save this article

Dynamic survival prediction combining landmarking with a machine learning ensemble: Methodology and empirical comparison

Author

Listed:
  • Kamaryn T. Tanner
  • Linda D. Sharples
  • Rhian M. Daniel
  • Ruth H. Keogh

Abstract

Dynamic prediction models provide predicted survival probabilities that can be updated over time for an individual as new measurements become available. Two techniques for dynamic survival prediction with longitudinal data dominate the statistical literature: joint modelling and landmarking. There is substantial interest in the use of machine learning methods for prediction; however, their use in the context of dynamic survival prediction has been limited. We show how landmarking can be combined with a machine learning ensemble—the Super Learner. The ensemble combines predictions from different machine learning and statistical algorithms with the goal of achieving improved performance. The proposed approach exploits discrete time survival analysis techniques to enable the use of machine learning algorithms for binary outcomes. We discuss practical and statistical considerations involved in implementing the ensemble. The methods are illustrated and compared using longitudinal data from the UK Cystic Fibrosis Registry. Standard landmarking and the landmark Super Learner approach resulted in similar cross‐validated predictive performance, in this case, outperforming joint modelling.

Suggested Citation

  • Kamaryn T. Tanner & Linda D. Sharples & Rhian M. Daniel & Ruth H. Keogh, 2021. "Dynamic survival prediction combining landmarking with a machine learning ensemble: Methodology and empirical comparison," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 3-30, January.
  • Handle: RePEc:bla:jorssa:v:184:y:2021:i:1:p:3-30
    DOI: 10.1111/rssa.12611
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12611
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    2. Mogensen, Ulla B. & Ishwaran, Hemant & Gerds, Thomas A., 2012. "Evaluating Random Forests for Survival Analysis Using Prediction Error Curves," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i11).
    3. Marlena Maziarz & Patrick Heagerty & Tianxi Cai & Yingye Zheng, 2017. "On longitudinal prediction with time-to-event outcome: Comparison of modeling options," Biometrics, The International Biometric Society, vol. 73(1), pages 83-93, March.
    4. Rizopoulos, Dimitris, 2016. "The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i07).
    5. Yueh-Yun Chi & Joseph G. Ibrahim, 2006. "Joint Models for Multivariate Longitudinal and Multivariate Survival Data," Biometrics, The International Biometric Society, vol. 62(2), pages 432-445, June.
    6. Jessica Barrett & Peter Diggle & Robin Henderson & David Taylor-Robinson, 2015. "Joint modelling of repeated measurements and time-to-event outcomes: flexible model specification and exact likelihood inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 131-148, January.
    7. Erik T. Parner & Per K. Andersen, 2010. "Regression analysis of censored data using pseudo-observations," Stata Journal, StataCorp LP, vol. 10(3), pages 408-422, September.
    8. Rizopoulos, Dimitris, 2010. "JM: An R Package for the Joint Modelling of Longitudinal and Time-to-Event Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i09).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shikun & Li, Zhao & Lan, Lan & Zhao, Jieyi & Zheng, W. Jim & Li, Liang, 2022. "GPU accelerated estimation of a shared random effect joint model for dynamic prediction," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    2. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    3. Zhang, Danjie & Chen, Ming-Hui & Ibrahim, Joseph G. & Boye, Mark E. & Shen, Wei, 2016. "JMFit: A SAS Macro for Joint Models of Longitudinal and Survival Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i03).
    4. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    5. Oi, Katsuya, 2020. "Disuse as time away from a cognitively demanding job; how does it temporally or developmentally impact late-life cognition?," Intelligence, Elsevier, vol. 82(C).
    6. Marlena Maziarz & Patrick Heagerty & Tianxi Cai & Yingye Zheng, 2017. "On longitudinal prediction with time-to-event outcome: Comparison of modeling options," Biometrics, The International Biometric Society, vol. 73(1), pages 83-93, March.
    7. Lisa M. McCrink & Adele H. Marshall & Karen J. Cairns, 2013. "Advances in Joint Modelling: A Review of Recent Developments with Application to the Survival of End Stage Renal Disease Patients," International Statistical Review, International Statistical Institute, vol. 81(2), pages 249-269, August.
    8. Xavier Piulachs & Ramon Alemany & Montserrat Guillen, 2014. "A joint longitudinal and survival model with health care usage for insured elderly," Working Papers 2014-07, Universitat de Barcelona, UB Riskcenter.
    9. Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
    10. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    11. Solène Desmée & France Mentré & Christine Veyrat-Follet & Bernard Sébastien & Jérémie Guedj, 2017. "Using the SAEM algorithm for mechanistic joint models characterizing the relationship between nonlinear PSA kinetics and survival in prostate cancer patients," Biometrics, The International Biometric Society, vol. 73(1), pages 305-312, March.
    12. Medina-Olivares, Victor & Lindgren, Finn & Calabrese, Raffaella & Crook, Jonathan, 2023. "Joint models of multivariate longitudinal outcomes and discrete survival data with INLA: An application to credit repayment behaviour," European Journal of Operational Research, Elsevier, vol. 310(2), pages 860-873.
    13. Xavier Piulachs & Ramon Alemany & Montserrat Guillen, 2016. "Joint Modelling of Survival and Emergency Medical Care Usage in Spanish Insureds Aged 65+," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-11, April.
    14. Cuihong Zhang & Jing Ning & Steven H. Belle & Robert H. Squires & Jianwen Cai & Ruosha Li, 2022. "Assessing predictive discrimination performance of biomarkers in the presence of treatment‐induced dependent censoring," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1137-1157, November.
    15. Shahedul A. Khan & Nyla Basharat, 2022. "Accelerated failure time models for recurrent event data analysis and joint modeling," Computational Statistics, Springer, vol. 37(4), pages 1569-1597, September.
    16. Hongyuan Cao & Mathew M. Churpek & Donglin Zeng & Jason P. Fine, 2015. "Analysis of the Proportional Hazards Model With Sparse Longitudinal Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1187-1196, September.
    17. Beilin Jia & Donglin Zeng & Jason J. Z. Liao & Guanghan F. Liu & Xianming Tan & Guoqing Diao & Joseph G. Ibrahim, 2022. "Mixture survival trees for cancer risk classification," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 356-379, July.
    18. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. H. Joseph Newton & Nicholas J. Cox, 2013. "The Stata Journal Editors' Prize 2013: Erik Thorlund Parner and Per Kragh Andersen," Stata Journal, StataCorp LP, vol. 13(4), pages 669-671, December.
    20. Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:184:y:2021:i:1:p:3-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.