IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v84y2022i1p174-204.html
   My bibliography  Save this article

A graph‐theoretic approach to randomization tests of causal effects under general interference

Author

Listed:
  • David Puelz
  • Guillaume Basse
  • Avi Feller
  • Panos Toulis

Abstract

Interference exists when a unit's outcome depends on another unit's treatment assignment. For example, intensive policing on one street could have a spillover effect on neighbouring streets. Classical randomization tests typically break down in this setting because many null hypotheses of interest are no longer sharp under interference. A promising alternative is to instead construct a conditional randomization test on a subset of units and assignments for which a given null hypothesis is sharp. Finding these subsets is challenging, however, and existing methods are limited to special cases or have limited power. In this paper, we propose valid and easy‐to‐implement randomization tests for a general class of null hypotheses under arbitrary interference between units. Our key idea is to represent the hypothesis of interest as a bipartite graph between units and assignments, and to find an appropriate biclique of this graph. Importantly, the null hypothesis is sharp within this biclique, enabling conditional randomization‐based tests. We also connect the size of the biclique to statistical power. Moreover, we can apply off‐the‐shelf graph clustering methods to find such bicliques efficiently and at scale. We illustrate our approach in settings with clustered interference and show advantages over methods designed specifically for that setting. We then apply our method to a large‐scale policing experiment in Medellín, Colombia, where interference has a spatial structure.

Suggested Citation

  • David Puelz & Guillaume Basse & Avi Feller & Panos Toulis, 2022. "A graph‐theoretic approach to randomization tests of causal effects under general interference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 174-204, February.
  • Handle: RePEc:bla:jorssb:v:84:y:2022:i:1:p:174-204
    DOI: 10.1111/rssb.12478
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12478
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bryan S. Graham, 2008. "Identifying Social Interactions Through Conditional Variance Restrictions," Econometrica, Econometric Society, vol. 76(3), pages 643-660, May.
    2. Charles F. Manski, 2013. "Identification of treatment response with social interactions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
    3. Lawrence E. Blume & William A. Brock & Steven N. Durlauf & Rajshri Jayaraman, 2015. "Linear Social Interactions Models," Journal of Political Economy, University of Chicago Press, vol. 123(2), pages 444-496.
    4. Sobel, Michael E., 2006. "What Do Randomized Studies of Housing Mobility Demonstrate?: Causal Inference in the Face of Interference," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1398-1407, December.
    5. Rosenbaum, Paul R., 2010. "Design Sensitivity and Efficiency in Observational Studies," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 692-702.
    6. G W Basse & A Feller & P Toulis, 2019. "Randomization tests of causal effects under interference," Biometrika, Biometrika Trust, vol. 106(2), pages 487-494.
    7. Peng Ding & Avi Feller & Luke Miratrix, 2016. "Randomization inference for treatment effect variation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 655-671, June.
    8. Daniela Collazos & Eduardo García & Daniel Mejía & Daniel Ortega & Santiago Tobón, 2019. "Hot spots policing in a high crime environment: An experimental evaluation in Medellín," Documentos CEDE 17135, Universidad de los Andes, Facultad de Economía, CEDE.
    9. Bowers, Jake & Fredrickson, Mark M. & Panagopoulos, Costas, 2013. "Reasoning about Interference Between Units: A General Framework," Political Analysis, Cambridge University Press, vol. 21(1), pages 97-124, January.
    10. Rosenbaum, Paul R., 2007. "Interference Between Units in Randomized Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 191-200, March.
    11. Leung, Michael P., 2015. "Two-step estimation of network-formation models with incomplete information," Journal of Econometrics, Elsevier, vol. 188(1), pages 182-195.
    12. Graham, Bryan S. & Hahn, Jinyong, 2005. "Identification and estimation of the linear-in-means model of social interactions," Economics Letters, Elsevier, vol. 88(1), pages 1-6, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dario Tortarolo & Guillermo Cruces & Gonzalo Vazquez-Bare, 2023. "Design of partial population experiments with an application to spillovers in tax compliance," IFS Working Papers W23/17, Institute for Fiscal Studies.
    2. Tadao Hoshino & Takahide Yanagi, 2023. "Randomization Test for the Specification of Interference Structure," Papers 2301.05580, arXiv.org, revised Dec 2023.
    3. Guillermo Cruces & Dario Tortarolo & Gonzalo Vazquez-Bare, 2022. "Design of two-stage experiments with an application to spillovers in tax compliance," IFS Working Papers W22/32, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    2. Shaina J. Alexandria & Michael G. Hudgens & Allison E. Aiello, 2023. "Assessing intervention effects in a randomized trial within a social network," Biometrics, The International Biometric Society, vol. 79(2), pages 1409-1419, June.
    3. Bryan S. Graham, 2019. "Network Data," Papers 1912.06346, arXiv.org.
    4. Bryan S. Graham, 2019. "Network Data," CeMMAP working papers CWP71/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. C. Tort`u & I. Crimaldi & F. Mealli & L. Forastiere, 2020. "Modelling Network Interference with Multi-valued Treatments: the Causal Effect of Immigration Policy on Crime Rates," Papers 2003.10525, arXiv.org, revised Jun 2020.
    6. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
    7. Giovanni Cerulli, 2014. "ntreatreg: a Stata module for estimation of treatment effects in the presence of neighborhood interactions," United Kingdom Stata Users' Group Meetings 2014 15, Stata Users Group.
    8. Julius Owusu, 2023. "Randomization Inference of Heterogeneous Treatment Effects under Network Interference," Papers 2308.00202, arXiv.org, revised Jan 2024.
    9. Giulio Grossi & Marco Mariani & Alessandra Mattei & Patrizia Lattarulo & Ozge Oner, 2020. "Direct and spillover effects of a new tramway line on the commercial vitality of peripheral streets. A synthetic-control approach," Papers 2004.05027, arXiv.org, revised Nov 2023.
    10. Sourafel Girma & Yundan Gong & Holger Görg & Sandra Lancheros, 2016. "Estimating direct and indirect effects of foreign direct investment on firm productivity in the presence of interactions between firms," World Scientific Book Chapters, in: MULTINATIONAL ENTERPRISES AND HOST COUNTRY DEVELOPMENT, chapter 12, pages 227-239, World Scientific Publishing Co. Pte. Ltd..
    11. Boucher, Vincent & Fortin, Bernard, 2015. "Some Challenges in the Empirics of the Effects of Networks," IZA Discussion Papers 8896, Institute of Labor Economics (IZA).
    12. Lin, Zhongjian & Tang, Xun & Yu, Ning Neil, 2021. "Uncovering heterogeneous social effects in binary choices," Journal of Econometrics, Elsevier, vol. 222(2), pages 959-973.
    13. Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
    14. Eric Auerbach, 2019. "Identification and Estimation of a Partially Linear Regression Model using Network Data," Papers 1903.09679, arXiv.org, revised Jun 2021.
    15. Bryan S. Graham, 2018. "Identifying and Estimating Neighborhood Effects," Journal of Economic Literature, American Economic Association, vol. 56(2), pages 450-500, June.
    16. Kosuke Imai & Zhichao Jiang, 2020. "Identification and sensitivity analysis of contagion effects in randomized placebo‐controlled trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1637-1657, October.
    17. Giovanni Cerulli, 2014. "Identification and Estimation of Treatment Effects in the Presence of Neighbourhood Interactions," CERIS Working Paper 201404, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    18. Arun Advani & Bansi Malde, 2014. "Empirical methods for networks data: social effects, network formation and measurement error," IFS Working Papers W14/34, Institute for Fiscal Studies.
    19. Clarke, Damian, 2017. "Estimating Difference-in-Differences in the Presence of Spillovers," MPRA Paper 81604, University Library of Munich, Germany.
    20. Mathias Lundin & Maria Karlsson, 2014. "Estimation of causal effects in observational studies with interference between units," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 417-433, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:84:y:2022:i:1:p:174-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.