IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v184y2021i4p1199-1219.html
   My bibliography  Save this article

Personalised need of care in an ageing society: The making of a prediction tool based on register data

Author

Listed:
  • Marvin N. Wright
  • Sasmita Kusumastuti
  • Laust H. Mortensen
  • Rudi G. J. Westendorp
  • Thomas A. Gerds

Abstract

Danish municipalities monitor older persons who are at high risk of declining health and would later need home care services. However, there is no established strategy yet on how to accurately identify those who are at high risk. Therefore, there is great potential to optimise the municipalities’ prevention strategies. Denmark’s comprehensive set of electronic population registers provide longitudinal data that cover individual and household socio‐demographics and medical history. Using these data, we developed and applied recurrent neural networks to predict the risk of a need of care services in the future and thus identify individuals who would benefit the most from the municipalities’ prevention strategies. We compared our recurrent neural network model to prediction models based on Cox regression and Fine–Gray regression in terms of calibration and discrimination. Challenges for the prediction modelling were the competing risk of death and the longitudinal information on the registered life course data.

Suggested Citation

  • Marvin N. Wright & Sasmita Kusumastuti & Laust H. Mortensen & Rudi G. J. Westendorp & Thomas A. Gerds, 2021. "Personalised need of care in an ageing society: The making of a prediction tool based on register data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1199-1219, October.
  • Handle: RePEc:bla:jorssa:v:184:y:2021:i:4:p:1199-1219
    DOI: 10.1111/rssa.12644
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12644
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12644?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marlena Maziarz & Patrick Heagerty & Tianxi Cai & Yingye Zheng, 2017. "On longitudinal prediction with time-to-event outcome: Comparison of modeling options," Biometrics, The International Biometric Society, vol. 73(1), pages 83-93, March.
    2. M. J. Sweeting & S. G. Thompson, 2012. "Making predictions from complex longitudinal data, with application to planning monitoring intervals in a national screening programme," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 569-586, April.
    3. Jong‐Hyeon Jeong & Jason Fine, 2006. "Direct parametric inference for the cumulative incidence function," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 187-200, April.
    4. Paul Blanche & Cécile Proust-Lima & Lucie Loubère & Claudine Berr & Jean-François Dartigues & Hélène Jacqmin-Gadda, 2015. "Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks," Biometrics, The International Biometric Society, vol. 71(1), pages 102-113, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao‐Li Meng, 2021. "Enhancing (publications on) data quality: Deeper data minding and fuller data confession," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1161-1175, October.
    2. König, Pascal D. & Wenzelburger, Georg, 2021. "The legitimacy gap of algorithmic decision-making in the public sector: Why it arises and how to address it," Technology in Society, Elsevier, vol. 67(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yosra Yousif & Faiz Elfaki & Meftah Hrairi & Oyelola Adegboye, 2022. "Bayesian Analysis of Masked Competing Risks Data Based on Proportional Subdistribution Hazards Model," Mathematics, MDPI, vol. 10(17), pages 1-10, August.
    2. Serge M. A. Somda & Eve Leconte & Andrew Kramar & Nicolas Penel & Christine Chevreau & Martine Delannes & Maria Rios & Thomas Filleron, 2014. "Determining the Length of Posttherapeutic Follow-up for Cancer Patients Using Competing Risks Modeling," Medical Decision Making, , vol. 34(2), pages 168-179, February.
    3. Gámiz, María Luz & Mammen, Enno & Martínez-Miranda, María Dolores & Nielsen, Jens Perch, 2022. "Missing link survival analysis with applications to available pandemic data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    4. S. R. Haile & J.-H. Jeong & X. Chen & Y. Cheng, 2016. "A 3-parameter Gompertz distribution for survival data with competing risks, with an application to breast cancer data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2239-2253, September.
    5. Qing Liu & Gong Tang & Joseph P. Costantino & Chung‐Chou H. Chang, 2020. "Landmark proportional subdistribution hazards models for dynamic prediction of cumulative incidence functions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1145-1162, November.
    6. Kamaryn T. Tanner & Linda D. Sharples & Rhian M. Daniel & Ruth H. Keogh, 2021. "Dynamic survival prediction combining landmarking with a machine learning ensemble: Methodology and empirical comparison," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 3-30, January.
    7. Liang Li & Sheng Luo & Bo Hu & Tom Greene, 2017. "Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 357-378, December.
    8. Lu Mao & D. Y. Lin, 2017. "Efficient estimation of semiparametric transformation models for the cumulative incidence of competing risks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 573-587, March.
    9. Graeme L. Hickey & Pete Philipson & Andrea Jorgensen & Ruwanthi Kolamunnage‐Dona, 2018. "A comparison of joint models for longitudinal and competing risks data, with application to an epilepsy drug randomized controlled trial," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1105-1123, October.
    10. Paul Blanche & Thomas A. Gerds & Claus T. Ekstrøm, 2019. "The Wally plot approach to assess the calibration of clinical prediction models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 150-167, January.
    11. Judith J. Lok & Shu Yang & Brian Sharkey & Michael D. Hughes, 2018. "Estimation of the cumulative incidence function under multiple dependent and independent censoring mechanisms," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 201-223, April.
    12. Wang, Shikun & Li, Zhao & Lan, Lan & Zhao, Jieyi & Zheng, W. Jim & Li, Liang, 2022. "GPU accelerated estimation of a shared random effect joint model for dynamic prediction," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    13. Li, Chenxi, 2016. "The Fine–Gray model under interval censored competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 327-344.
    14. Michael G. Hudgens & Chenxi Li & Jason P. Fine, 2014. "Parametric likelihood inference for interval censored competing risks data," Biometrics, The International Biometric Society, vol. 70(1), pages 1-9, March.
    15. Lo, Simon M.S. & Mammen, Enno & Wilke, Ralf A., 2020. "A nested copula duration model for competing risks with multiple spells," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    16. Yunda Huang & Yuanyuan Zhang & Zong Zhang & Peter B. Gilbert, 2020. "Generating Survival Times Using Cox Proportional Hazards Models with Cyclic and Piecewise Time-Varying Covariates," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 324-339, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:184:y:2021:i:4:p:1199-1219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.