IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v143y2016icp327-344.html
   My bibliography  Save this article

The Fine–Gray model under interval censored competing risks data

Author

Listed:
  • Li, Chenxi

Abstract

We consider semiparametric analysis of competing risks data subject to mixed case interval censoring. The Fine–Gray model (Fine and Gray, 1999) is used to model the cumulative incidence function and is coupled with sieve semiparametric maximum likelihood estimation based on univariate or multivariate likelihood. The univariate likelihood of cause-specific data enables separate estimation of cumulative incidence function for each competing risk, in contrast with the multivariate likelihood of full data which estimates cumulative incidence functions for multiple competing risks jointly. Under both likelihoods and certain regularity conditions, we show that the regression parameter estimator is asymptotically normal and semiparametrically efficient, although the spline-based sieve estimator of the baseline cumulative subdistribution hazard converges at a rate slower than root-n. The proposed method is evaluated by simulation studies regarding its finite sample performance and is illustrated by a competing risk analysis of data from a dementia cohort study.

Suggested Citation

  • Li, Chenxi, 2016. "The Fine–Gray model under interval censored competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 327-344.
  • Handle: RePEc:eee:jmvana:v:143:y:2016:i:c:p:327-344
    DOI: 10.1016/j.jmva.2015.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15002481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas P. Jewell, 2003. "Nonparametric estimation from current status data with competing risks," Biometrika, Biometrika Trust, vol. 90(1), pages 183-197, March.
    2. Anton Schick & Qiqing Yu, 2000. "Consistency of the GMLE with Mixed Case Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 45-55, March.
    3. Michael G. Hudgens & Glen A. Satten & Ira M. Longini, 2001. "Nonparametric Maximum Likelihood Estimation for Competing Risks Survival Data Subject to Interval Censoring and Truncation," Biometrics, The International Biometric Society, vol. 57(1), pages 74-80, March.
    4. Jong‐Hyeon Jeong & Jason Fine, 2006. "Direct parametric inference for the cumulative incidence function," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 187-200, April.
    5. Chenxi Li & Jason P. Fine, 2013. "Smoothed nonparametric estimation for current status competing risks data," Biometrika, Biometrika Trust, vol. 100(1), pages 173-187.
    6. Ying Zhang & Lei Hua & Jian Huang, 2010. "A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 338-354, June.
    7. Michael G. Hudgens & Chenxi Li & Jason P. Fine, 2014. "Parametric likelihood inference for interval censored competing risks data," Biometrics, The International Biometric Society, vol. 70(1), pages 1-9, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Mao & Dan-Yu Lin & Donglin Zeng, 2017. "Semiparametric regression analysis of interval-censored competing risks data," Biometrics, The International Biometric Society, vol. 73(3), pages 857-865, September.
    2. Li, Chenxi, 2016. "Cause-specific hazard regression for competing risks data under interval censoring and left truncation," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 197-208.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chenxi, 2016. "Cause-specific hazard regression for competing risks data under interval censoring and left truncation," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 197-208.
    2. Lu Mao & Dan-Yu Lin & Donglin Zeng, 2017. "Semiparametric regression analysis of interval-censored competing risks data," Biometrics, The International Biometric Society, vol. 73(3), pages 857-865, September.
    3. Michael G. Hudgens & Chenxi Li & Jason P. Fine, 2014. "Parametric likelihood inference for interval censored competing risks data," Biometrics, The International Biometric Society, vol. 70(1), pages 1-9, March.
    4. Yosra Yousif & Faiz Elfaki & Meftah Hrairi & Oyelola Adegboye, 2022. "Bayesian Analysis of Masked Competing Risks Data Based on Proportional Subdistribution Hazards Model," Mathematics, MDPI, vol. 10(17), pages 1-10, August.
    5. Tamalika Koley & Anup Dewanji, 2019. "Revisiting Non-Parametric Maximum Likelihood Estimation of Current Status Data with Competing Risks," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 39-59, June.
    6. Lu Mao & D. Y. Lin, 2017. "Efficient estimation of semiparametric transformation models for the cumulative incidence of competing risks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 573-587, March.
    7. Ma, Ling & Hu, Tao & Sun, Jianguo, 2016. "Cox regression analysis of dependent interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 79-90.
    8. Michael G. Hudgens & Marloes H. Maathuis & Peter B. Gilbert, 2007. "Nonparametric Estimation of the Joint Distribution of a Survival Time Subject to Interval Censoring and a Continuous Mark Variable," Biometrics, The International Biometric Society, vol. 63(2), pages 372-380, June.
    9. Somnath Datta & Rajeshwari Sundaram, 2006. "Nonparametric Estimation of Stage Occupation Probabilities in a Multistage Model with Current Status Data," Biometrics, The International Biometric Society, vol. 62(3), pages 829-837, September.
    10. Pao-sheng Shen, 2022. "Nonparametric estimation for competing risks survival data subject to left truncation and interval censoring," Computational Statistics, Springer, vol. 37(1), pages 29-42, March.
    11. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
    12. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
    13. Eddie Anderson & Artem Prokhorov & Yajing Zhu, 2020. "A Simple Estimator of Two‐Dimensional Copulas, with Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1375-1412, December.
    14. Peijie Wang & Hui Zhao & Jianguo Sun, 2016. "Regression analysis of case K interval‐censored failure time data in the presence of informative censoring," Biometrics, The International Biometric Society, vol. 72(4), pages 1103-1112, December.
    15. Qiqing Yu & George Wong & Linxiong Li, 2001. "Asymptotic Properties of Self-Consistent Estimators with Mixed Interval-Censored Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 469-486, September.
    16. Yanqing Sun & Qingning Zhou & Peter B. Gilbert, 2023. "Analysis of the Cox Model with Longitudinal Covariates with Measurement Errors and Partly Interval Censored Failure Times, with Application to an AIDS Clinical Trial," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 430-454, July.
    17. Serge M. A. Somda & Eve Leconte & Andrew Kramar & Nicolas Penel & Christine Chevreau & Martine Delannes & Maria Rios & Thomas Filleron, 2014. "Determining the Length of Posttherapeutic Follow-up for Cancer Patients Using Competing Risks Modeling," Medical Decision Making, , vol. 34(2), pages 168-179, February.
    18. Halina Frydman & Michael Szarek, 2009. "Nonparametric Estimation in a Markov “Illness–Death” Process from Interval Censored Observations with Missing Intermediate Transition Status," Biometrics, The International Biometric Society, vol. 65(1), pages 143-151, March.
    19. Da Xu & Hui Zhao & Jianguo Sun, 2018. "Joint analysis of interval-censored failure time data and panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 94-109, January.
    20. S. R. Haile & J.-H. Jeong & X. Chen & Y. Cheng, 2016. "A 3-parameter Gompertz distribution for survival data with competing risks, with an application to breast cancer data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2239-2253, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:143:y:2016:i:c:p:327-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.