IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v183y2020i4p1387-1410.html
   My bibliography  Save this article

Direct and stable weight adjustment in non‐experimental studies with multivalued treatments: analysis of the effect of an earthquake on post‐traumatic stress

Author

Listed:
  • María de los Angeles Resa
  • José R. Zubizarreta

Abstract

In February 2010, a massive earthquake struck Chile, causing devastation in certain parts of the country, affecting other areas, and leaving territories untouched. 2 months after the earthquake, Chile's Ministry of Social Development reinterviewed a representative subsample of its National Socioeconomic Characterization Survey, which had been completed 2 months before the earthquake, thereby creating a prospective longitudinal survey with detailed information of the same individuals before and after the earthquake. We use a new weighting method for non‐experimental studies with multivalued treatments to estimate the effect of levels of exposure to the earthquake on post‐traumatic stress. Unlike common weighting approaches for multivalued treatments, this new method does not require explicit modelling of the generalized propensity score and instead focuses on directly balancing the covariates across the multivalued treatments with weights that have minimum variance. As a result, the weighting estimator is stable and approximately unbiased. Furthermore, the weights are constrained to avoid model extrapolation. We illustrate this new method in a simulation study, with both categorical and continuous treatments. The results show that directly targeting balance instead of explicitly modelling the treatment assignment probabilities tends to provide the best results in terms of bias and root‐mean‐square error. Using this method, we estimate the effect of the intensity of the earthquake on post‐traumatic stress. We implement this method in the new package msbw for R.

Suggested Citation

  • María de los Angeles Resa & José R. Zubizarreta, 2020. "Direct and stable weight adjustment in non‐experimental studies with multivalued treatments: analysis of the effect of an earthquake on post‐traumatic stress," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1387-1410, October.
  • Handle: RePEc:bla:jorssa:v:183:y:2020:i:4:p:1387-1410
    DOI: 10.1111/rssa.12561
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12561
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hainmueller, Jens, 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies," Political Analysis, Cambridge University Press, vol. 20(1), pages 25-46, January.
    2. Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
    3. Samuel D. Pimentel & Rachel R. Kelz & Jeffrey H. Silber & Paul R. Rosenbaum, 2015. "Large, Sparse Optimal Matching With Refined Covariate Balance in an Observational Study of the Health Outcomes Produced by New Surgeons," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 515-527, June.
    4. Alexis Diamond & Jasjeet S. Sekhon, 2013. "Genetic Matching for Estimating Causal Effects: A General Multivariate Matching Method for Achieving Balance in Observational Studies," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 932-945, July.
    5. Shu Yang & Guido W. Imbens & Zhanglin Cui & Douglas E. Faries & Zbigniew Kadziola, 2016. "Propensity score matching and subclassification in observational studies with multi‐level treatments," Biometrics, The International Biometric Society, vol. 72(4), pages 1055-1065, December.
    6. José R. Zubizarreta, 2015. "Stable Weights that Balance Covariates for Estimation With Incomplete Outcome Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 910-922, September.
    7. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    8. Yixin Wang & Jose R Zubizarreta, 2020. "Minimal dispersion approximately balancing weights: asymptotic properties and practical considerations," Biometrika, Biometrika Trust, vol. 107(1), pages 93-105.
    9. Alessandra Mattei & Fabrizia Mealli, 2015. "Discussion of “On Bayesian Estimation of Marginal Structural Models”," Biometrics, The International Biometric Society, vol. 71(2), pages 293-296, June.
    10. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    11. José R. Zubizarreta, 2012. "Using Mixed Integer Programming for Matching in an Observational Study of Kidney Failure After Surgery," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1360-1371, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    2. Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
    3. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    4. Jason J. Sauppe & Sheldon H. Jacobson, 2017. "The role of covariate balance in observational studies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 323-344, June.
    5. Martin Cousineau & Vedat Verter & Susan A. Murphy & Joelle Pineau, 2022. "Estimating causal effects with optimization-based methods: A review and empirical comparison," Papers 2203.00097, arXiv.org.
    6. Ruoqi Yu, 2021. "Evaluating and improving a matched comparison of antidepressants and bone density," Biometrics, The International Biometric Society, vol. 77(4), pages 1276-1288, December.
    7. Dasom Lee & Shu Yang & Lin Dong & Xiaofei Wang & Donglin Zeng & Jianwen Cai, 2023. "Improving trial generalizability using observational studies," Biometrics, The International Biometric Society, vol. 79(2), pages 1213-1225, June.
    8. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    9. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    10. Vahe Avagyan & Stijn Vansteelandt, 2021. "Stable inverse probability weighting estimation for longitudinal studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1046-1067, September.
    11. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    12. Jelena Bradic & Stefan Wager & Yinchu Zhu, 2019. "Sparsity Double Robust Inference of Average Treatment Effects," Papers 1905.00744, arXiv.org.
    13. Brett R. Gordon & Florian Zettelmeyer & Neha Bhargava & Dan Chapsky, 2019. "A Comparison of Approaches to Advertising Measurement: Evidence from Big Field Experiments at Facebook," Marketing Science, INFORMS, vol. 38(2), pages 193-225, March.
    14. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    15. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
    16. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    17. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    18. Kevin P. Josey & Elizabeth Juarez‐Colunga & Fan Yang & Debashis Ghosh, 2021. "A framework for covariate balance using Bregman distances," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 790-816, September.
    19. Dongcheng Zhang & Kunpeng Zhang, 2020. "Weighting-Based Treatment Effect Estimation via Distribution Learning," Papers 2012.13805, arXiv.org, revised May 2023.
    20. Sean Yiu & Li Su, 2022. "Joint calibrated estimation of inverse probability of treatment and censoring weights for marginal structural models," Biometrics, The International Biometric Society, vol. 78(1), pages 115-127, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:183:y:2020:i:4:p:1387-1410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.