Advanced Search
MyIDEAS: Login to save this article or follow this journal

Using Mixed Integer Programming for Matching in an Observational Study of Kidney Failure After Surgery

Contents:

Author Info

  • José R. Zubizarreta
Registered author(s):

    Abstract

    This article presents a new method for optimal matching in observational studies based on mixed integer programming. Unlike widely used matching methods based on network algorithms, which attempt to achieve covariate balance by minimizing the total sum of distances between treated units and matched controls, this new method achieves covariate balance directly, either by minimizing both the total sum of distances and a weighted sum of specific measures of covariate imbalance, or by minimizing the total sum of distances while constraining the measures of imbalance to be less than or equal to certain tolerances. The inclusion of these extra terms in the objective function or the use of these additional constraints explicitly optimizes or constrains the criteria that will be used to evaluate the quality of the match. For example, the method minimizes or constrains differences in univariate moments, such as means, variances, and skewness; differences in multivariate moments, such as correlations between covariates; differences in quantiles; and differences in statistics, such as the Kolmogorov--Smirnov statistic, to minimize the differences in both location and shape of the empirical distributions of the treated units and matched controls. While balancing several of these measures, it is also possible to impose constraints for exact and near-exact matching, and fine and near-fine balance for more than one nominal covariate, whereas network algorithms can finely or near-finely balance only a single nominal covariate. From a practical standpoint, this method eliminates the guesswork involved in current optimal matching methods, and offers a controlled and systematic way of improving covariate balance by focusing the matching efforts on certain measures of covariate imbalance and their corresponding weights or tolerances. A matched case--control study of acute kidney injury after surgery among Medicare patients illustrates these features in detail. A new R package called mipmatch implements the method.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://hdl.handle.net/10.1080/01621459.2012.703874
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 500 (December)
    Pages: 1360-1371

    as in new window
    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1360-1371

    Contact details of provider:
    Web page: http://www.tandfonline.com/UASA20

    Order Information:
    Web: http://www.tandfonline.com/pricing/journal/UASA20

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1360-1371. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.