IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v88y2020i3p580-598.html
   My bibliography  Save this article

Smoothing and Benchmarking for Small Area Estimation

Author

Listed:
  • Rebecca C. Steorts
  • Timo Schmid
  • Nikos Tzavidis

Abstract

Small area estimation is concerned with methodology for estimating population parameters associated with a geographic area defined by a cross‐classification that may also include non‐geographic dimensions. In this paper, we develop constrained estimation methods for small area problems: those requiring smoothness with respect to similarity across areas, such as geographic proximity or clustering by covariates, and benchmarking constraints, requiring weighted means of estimates to agree across levels of aggregation. We develop methods for constrained estimation decision theoretically and discuss their geometric interpretation. The constrained estimators are the solutions to tractable optimisation problems and have closed‐form solutions. Mean squared errors of the constrained estimators are calculated via bootstrapping. Our approach assumes the Bayes estimator exists and is applicable to any proposed model. In addition, we give special cases of our techniques under certain distributional assumptions. We illustrate the proposed methodology using web‐scraped data on Berlin rents aggregated over areas to ensure privacy.

Suggested Citation

  • Rebecca C. Steorts & Timo Schmid & Nikos Tzavidis, 2020. "Smoothing and Benchmarking for Small Area Estimation," International Statistical Review, International Statistical Institute, vol. 88(3), pages 580-598, December.
  • Handle: RePEc:bla:istatr:v:88:y:2020:i:3:p:580-598
    DOI: 10.1111/insr.12373
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12373
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. Datta & M. Ghosh & R. Steorts & J. Maples, 2011. "Bayesian benchmarking with applications to small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 574-588, November.
    2. James R. Carpenter & Harvey Goldstein & Jon Rasbash, 2003. "A novel bootstrap procedure for assessing the relationship between class size and achievement," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 431-443, October.
    3. Nikos Tzavidis & Li‐Chun Zhang & Angela Luna & Timo Schmid & Natalia Rojas‐Perilla, 2018. "From start to finish: a framework for the production of small area official statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 927-979, October.
    4. Lee, Ann B. & Wasserman, Larry, 2010. "Spectral Connectivity Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1241-1255.
    5. W. R. Bell & G. S. Datta & M. Ghosh, 2013. "Benchmarking small area estimators," Biometrika, Biometrika Trust, vol. 100(1), pages 189-202.
    6. Isabel Molina & Nicola Salvati & Monica Pratesi, 2009. "Bootstrap for estimating the MSE of the Spatial EBLUP," Computational Statistics, Springer, vol. 24(3), pages 441-458, August.
    7. Monica Pratesi & Nicola Salvati, 2008. "Small area estimation: the EBLUP estimator based on spatially correlated random area effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 113-141, February.
    8. Malay Ghosh & Rebecca Steorts, 2013. "Two-stage benchmarking as applied to small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 670-687, November.
    9. J. D. Opsomer & G. Claeskens & M. G. Ranalli & G. Kauermann & F. J. Breidt, 2008. "Non‐parametric small area estimation using penalized spline regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 265-286, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nandram, Balgobin & Cruze, Nathan B & Erciulescu, Andreea L & Chen, Lu, 2022. "Bayesian Small Area Models under Inequality Constraints with Benchmarking and Double Shrinkage," NASS Research Reports 327250, United States Department of Agriculture, National Agricultural Statistics Service.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz .Zk{a}d{l}o & Adam Chwila, 2024. "A step towards the integration of machine learning and small area estimation," Papers 2402.07521, arXiv.org.
    2. Malay Ghosh & Tatsuya Kubokawa & Yuki Kawakubo, 2014. "Benchmarked Empirical Bayes Methods in Multiplicative Area-level Models with Risk Evaluation," CIRJE F-Series CIRJE-F-918, CIRJE, Faculty of Economics, University of Tokyo.
    3. Zhang Junni L. & Bryant John, 2020. "Fully Bayesian Benchmarking of Small Area Estimation Models," Journal of Official Statistics, Sciendo, vol. 36(1), pages 197-223, March.
    4. Benavent, Roberto & Morales, Domingo, 2016. "Multivariate Fay–Herriot models for small area estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 372-390.
    5. Marius Stefan & Michael Hidiroglou, 2021. "Benchmarked Estimators for a Small Area Mean Under a Onefold Nested Regression Model," International Statistical Review, International Statistical Institute, vol. 89(1), pages 108-131, April.
    6. Kordos Jan, 2016. "Development of Small Area Estimation in Official Statistics," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 105-132, March.
    7. Jan Kordos, 2016. "Development Of Smallarea Estimation In Official Statistics," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 105-132, March.
    8. Rebecca Steorts & M. Ugarte, 2014. "Comments on: “Single and two-stage cross-sectional and time series benchmarking procedures for small area estimation”," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 680-685, December.
    9. repec:csb:stintr:v:17:y:2016:i:1:p:105-132 is not listed on IDEAS
    10. Ghosh Malay, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    11. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    12. Ryan Janicki & Andrew Vesper, 2017. "Benchmarking techniques for reconciling Bayesian small area models at distinct geographic levels," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 557-581, November.
    13. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    14. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    15. Dian Handayani & Henk Folmer & Anang Kurnia & Khairil Anwar Notodiputro, 2018. "The spatial empirical Bayes predictor of the small area mean for a lognormal variable of interest and spatially correlated random effects," Empirical Economics, Springer, vol. 55(1), pages 147-167, August.
    16. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    17. Marhuenda, Yolanda & Molina, Isabel & Morales, Domingo, 2013. "Small area estimation with spatio-temporal Fay–Herriot models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 308-325.
    18. Valéry Dongmo Jiongo & Pierre Nguimkeu, 2018. "Bootstrapping Mean Squared Errors of Robust Small-Area Estimators: Application to the Method-of-Payments Data," Staff Working Papers 18-28, Bank of Canada.
    19. Caterina Giusti & Lucio Masserini & Monica Pratesi, 2017. "Local Comparisons of Small Area Estimates of Poverty: An Application Within the Tuscany Region in Italy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 131(1), pages 235-254, March.
    20. Tomasz Ża̧dło, 2015. "On longitudinal moving average model for prediction of subpopulation total," Statistical Papers, Springer, vol. 56(3), pages 749-771, August.
    21. Molina, Isabel, 2022. "Disaggregating data in household surveys: Using small area estimation methodologies," Estudios Estadísticos 48107, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:88:y:2020:i:3:p:580-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.