IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v26y2022i4p1247-1260.html
   My bibliography  Save this article

Material system analysis: Characterization of flows, stocks, and performance indicators of manganese, nickel, and natural graphite in the EU, 2012–2016

Author

Listed:
  • Luca Ciacci
  • Cristina T. de Matos
  • Barbara K. Reck
  • Dominic Wittmer
  • Elena Bernardi
  • Fabrice Mathieux
  • Fabrizio Passarini

Abstract

Raw materials form an industrial base to provide the wide range of products and services demanded by industry and society. In particular, manganese, nickel, and natural graphite are examples of materials having a globally consolidated supply chain with interlinked use in steelmaking and essential role in clean energy systems and e‐mobility. A stable material supply chain is hence a priority for import‐dependent regions like the EU and builds upon quantitative system understanding. To this aim, the EU Material System Analysis is applied to analyze the anthropogenic cycle of manganese, nickel, and natural graphite from 2012 to 2016. We provide a detailed characterization of their material stocks, flows, and changes in selected performance indicators including end‐of‐life recycling rate (51% ± 3%, 49% ± 8%, and 8% ± 0% for manganese, nickel, and natural graphite, respectively), self‐sufficiency potential (40% ± 3%, 32% ± 5%, and 5% ± 1%), old scrap ratio (31% ± 0%, 22% ± 2%, and 90% ± 1%), recycling input rate (25% ± 1%, 38% ± 2%, and 3% ± 0%), recycling process efficiency rate (84% ± 2%, 85% ± 6%, and 48% ± 3%), and pre‐consumer losses rate (83% ± 3%, 5% ± 1%, and 24% ± 2%). The achieved results may inform decision‐makers engaged with raw materials recovery and recycling as well as the strategic securement of a reliable material supply to the EU for resilient industrial ecosystems.

Suggested Citation

  • Luca Ciacci & Cristina T. de Matos & Barbara K. Reck & Dominic Wittmer & Elena Bernardi & Fabrice Mathieux & Fabrizio Passarini, 2022. "Material system analysis: Characterization of flows, stocks, and performance indicators of manganese, nickel, and natural graphite in the EU, 2012–2016," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1247-1260, August.
  • Handle: RePEc:bla:inecol:v:26:y:2022:i:4:p:1247-1260
    DOI: 10.1111/jiec.13226
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13226
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T. E. Graedel & Julian Allwood & Jean‐Pierre Birat & Matthias Buchert & Christian Hagelüken & Barbara K. Reck & Scott F. Sibley & Guido Sonnemann, 2011. "What Do We Know About Metal Recycling Rates?," Journal of Industrial Ecology, Yale University, vol. 15(3), pages 355-366, June.
    2. Hajime Ohno & Kazuyo Matsubae & Kenichi Nakajima & Shinichiro Nakamura & Tetsuya Nagasaka, 2014. "Unintentional Flow of Alloying Elements in Steel during Recycling of End-of-Life Vehicles," Journal of Industrial Ecology, Yale University, vol. 18(2), pages 242-253, April.
    3. Paul H. Brunner & Hwong‐Wen Ma, 2009. "Substance Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 13(1), pages 11-14, February.
    4. Sebastian Ernst Volkmann & Felix Lehnen & Peter A. Kukla, 2019. "Estimating the economics of a mining project on seafloor manganese nodules," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 32(3), pages 287-306, November.
    5. Sun, Xin & Hao, Han & Liu, Zongwei & Zhao, Fuquan, 2020. "Insights into the global flow pattern of manganese," Resources Policy, Elsevier, vol. 65(C).
    6. Hayes, Sarah M. & McCullough, Erin A., 2018. "Critical minerals: A review of elemental trends in comprehensive criticality studies," Resources Policy, Elsevier, vol. 59(C), pages 192-199.
    7. Jeong, Yong-Soo & Matsubae-Yokoyama, Kazuyo & Kubo, Hironari & Pak, Jong-Jin & Nagasaka, Tetsuya, 2009. "Substance flow analysis of phosphorus and manganese correlated with South Korean steel industry," Resources, Conservation & Recycling, Elsevier, vol. 53(9), pages 479-489.
    8. Barbara K. Reck & Vera Susanne Rotter, 2012. "Comparing Growth Rates of Nickel and Stainless Steel Use in the Early 2000s," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 518-528, August.
    9. Dominik Wiedenhofer & Julia K. Steinberger & Nina Eisenmenger & Willi Haas, 2015. "Maintenance and Expansion: Modeling Material Stocks and Flows for Residential Buildings and Transportation Networks in the EU25," Journal of Industrial Ecology, Yale University, vol. 19(4), pages 538-551, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Helbig & Yasushi Kondo & Shinichiro Nakamura, 2022. "Simultaneously tracing the fate of seven metals at a global level with MaTrace‐multi," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 923-936, June.
    2. Guo, Tianjiao & Geng, Yong & Song, Xiaoqian & Rui, Xue & Ge, Zewen, 2023. "Tracing magnesium flows in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 83(C).
    3. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    4. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    5. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    6. Andersson, Magnus & Ljunggren Söderman, Maria & Sandén, Björn A., 2019. "Challenges of recycling multiple scarce metals: The case of Swedish ELV and WEEE recycling," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    7. Jedelhauser, Michael & Binder, Claudia R., 2015. "Losses and efficiencies of phosphorus on a national level – A comparison of European substance flow analyses," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 294-310.
    8. Meylan, Grégoire & Reck, Barbara K., 2017. "The anthropogenic cycle of zinc: Status quo and perspectives," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 1-10.
    9. Pothen, Frank & Hundt, Carolin, 2024. "European post-consumer steel scrap in 2050: A review of estimates and modeling assumptions," Jena Contributions to Economic Research Jahrgang 2024/1, Ernst-Abbe-Hochschule Jena – University of Applied Sciences, Department of Business Administration.
    10. Luis Gabriel Carmona & Kai Whiting & Helmut Haberl & Tânia Sousa, 2021. "The use of steel in the United Kingdom's transport sector: A stock–flow–service nexus case study," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 125-143, February.
    11. Pauliuk, Stefan & Kondo, Yasushi & Nakamura, Shinichiro & Nakajima, Kenichi, 2017. "Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 84-93.
    12. Adriano Cordisco & Riccardo Melloni & Lucia Botti, 2022. "Sustainable Circular Economy for the Integration of Disadvantaged People: A Preliminary Study on the Reuse of Lithium-Ion Batteries," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    13. Chen, Wei-Qiang & Graedel, T.E., 2012. "Dynamic analysis of aluminum stocks and flows in the United States: 1900–2009," Ecological Economics, Elsevier, vol. 81(C), pages 92-102.
    14. Jan Streeck & Quirin Dammerer & Dominik Wiedenhofer & Fridolin Krausmann, 2021. "The role of socio‐economic material stocks for natural resource use in the United States of America from 1870 to 2100," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1486-1502, December.
    15. Michael Saidani & Alissa Kendall & Bernard Yannou & Yann Leroy & François Cluzel, 2019. "Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators," Post-Print hal-02094798, HAL.
    16. Tsiliyannis, Christos Aristeides, 2015. "Sustainability by cyclic manufacturing: Assessment of resource preservation under uncertain growth and returns," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 155-170.
    17. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    18. Thibeault, Al & Ryder, Michael & Tomomewo, Olusegun & Mann, Michael, 2023. "A review of competitive advantage theory applied to the global rare earth industry transition," Resources Policy, Elsevier, vol. 85(PA).
    19. West, James, 2020. "Extractable global resources and the future availability of metal stocks: “Known Unknowns” for the foreseeable future," Resources Policy, Elsevier, vol. 65(C).
    20. Edgar Battand Towa Kouokam & Vanessa Zeller & Wouter Achten, 2019. "Input-output models and waste management analysis: A critical review," ULB Institutional Repository 2013/359535, ULB -- Universite Libre de Bruxelles.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:26:y:2022:i:4:p:1247-1260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.