IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v23y2019i4p959-971.html
   My bibliography  Save this article

Peak cement‐related CO2 emissions and the changes in drivers in China

Author

Listed:
  • Yuli Shan
  • Ya Zhou
  • Jing Meng
  • Zhifu Mi
  • Jingru Liu
  • Dabo Guan

Abstract

In order to fight against the climate change, China has set a series of emission reduction policies for super‐emitting sectors. The cement industry is the major source of process‐related emissions, and more attention should be paid to this industry. This study calculates the process‐related, direct fossil fuel–related, and indirect electricity‐related emissions from China's cement industry. The study finds that China's cement‐related emissions peaked in 2014. The emissions are, for the first time, divided into seven parts based on the cement used in different new building types. The provincial emission analysis finds that developed provinces outsourced their cement capacities to less developed regions. This study then employs index decomposition analysis to explore the drivers of changes in China's cement‐related emissions. The results show that economic growth was the primary driver of emission growth, while emission intensity and efficiency were two offsetting factors. The changes in the construction industry's structure and improvement in efficiency were the two major drivers that contributed to the decreased emissions since 2014.

Suggested Citation

  • Yuli Shan & Ya Zhou & Jing Meng & Zhifu Mi & Jingru Liu & Dabo Guan, 2019. "Peak cement‐related CO2 emissions and the changes in drivers in China," Journal of Industrial Ecology, Yale University, vol. 23(4), pages 959-971, August.
  • Handle: RePEc:bla:inecol:v:23:y:2019:i:4:p:959-971
    DOI: 10.1111/jiec.12839
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12839
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12839?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yi & Zhou, Wenji & Wei, Chu, 2023. "Environmental performance of the Chinese cement enterprise: An empirical analysis using a text-based directional vector," Energy Economics, Elsevier, vol. 125(C).
    2. Wei Wei & Ling He & Xiaofan Li & Qi Cui & Hao Chen, 2022. "The Effectiveness and Trade-Offs of Renewable Energy Policies in Achieving the Dual Decarbonization Goals in China: A Dynamic Computable General Equilibrium Analysis," IJERPH, MDPI, vol. 19(11), pages 1-18, May.
    3. Danyang Cheng & David M. Reiner & Fan Yang & Can Cui & Jing Meng & Yuli Shan & Yunhui Liu & Shu Tao & Dabo Guan, 2023. "Projecting future carbon emissions from cement production in developing countries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Guangyue Xu & Dong Xue & Hafizur Rehman, 2022. "Dynamic scenario analysis of CO2 emission in China’s cement industry by 2100 under the context of cutting overcapacity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-40, December.
    5. Xiao, Lin & Guan, Yuru & Guo, Yaqin & Xue, Rui & Li, Jiashuo & Shan, Yuli, 2022. "Emission accounting and drivers in 2004 EU accession countries," Applied Energy, Elsevier, vol. 314(C).
    6. Tan, Chang & Yu, Xiang & Guan, Yuru, 2022. "A technology-driven pathway to net-zero carbon emissions for China's cement industry," Applied Energy, Elsevier, vol. 325(C).
    7. Wenxiang Peng & Yutao Lei & Xuan Zhang, 2023. "Analysis of China’s High-Carbon Manufacturing Industry’s Carbon Emissions in the Digital Process," Sustainability, MDPI, vol. 15(20), pages 1-35, October.
    8. Zhijuan Li & Liang Wu & Zemin Zhang & Rui Chen & Yinjuan Jiang & Yuting Peng & Kaixin Zheng & Wen Jiang, 2022. "The Transformative Impacts of Green Finance Governance on Construction-Related CO 2 Emissions," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    9. Sheng Zhou & Alun Gu & Qing Tong & Yuefeng Guo & Xinyang Wei, 2022. "Multi‐scenario simulation on reducing CO2 emissions from China's major manufacturing industries targeting 2060," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 850-861, June.
    10. Doh Dinga, Christian & Wen, Zongguo, 2021. "Many-objective optimization of energy conservation and emission reduction in China’s cement industry," Applied Energy, Elsevier, vol. 304(C).
    11. Ofosu-Adarkwa, Jeffrey & Xie, Naiming & Javed, Saad Ahmed, 2020. "Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1,N) model and emissions' technical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:23:y:2019:i:4:p:959-971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.