IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v21y2017i5p1165-1179.html
   My bibliography  Save this article

Estimating Corporate Carbon Footprints with Externally Available Data

Author

Listed:
  • Bernhard Goldhammer
  • Christian Busse
  • Timo Busch

Abstract

No abstract is available for this item.

Suggested Citation

  • Bernhard Goldhammer & Christian Busse & Timo Busch, 2017. "Estimating Corporate Carbon Footprints with Externally Available Data," Journal of Industrial Ecology, Yale University, vol. 21(5), pages 1165-1179, October.
  • Handle: RePEc:bla:inecol:v:21:y:2017:i:5:p:1165-1179
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jiec.2017.21.issue-5
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anquetin, Théophile & Coqueret, Guillaume & Tavin, Bertrand & Welgryn, Lou, 2022. "Scopes of carbon emissions and their impact on green portfolios," Economic Modelling, Elsevier, vol. 115(C).
    2. Jérémi Assael & Thibaut Heurtebize & Laurent Carlier & François Soupé, 2023. "Greenhouse Gases Emissions: Estimating Corporate Non-Reported Emissions Using Interpretable Machine Learning," Sustainability, MDPI, vol. 15(4), pages 1-28, February.
    3. Timo Busch & Matthew Johnson & Thomas Pioch, 2022. "Corporate carbon performance data: Quo vadis?," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 350-363, February.
    4. Jeremi Assael & Thibaut Heurtebize & Laurent Carlier & Franc{c}ois Soup'e, 2022. "Greenhouse gases emissions: estimating corporate non-reported emissions using interpretable machine learning," Papers 2212.10844, arXiv.org.
    5. Jeremi Assael & Thibaut Heurtebize & Laurent Carlier & François Soupé, 2023. "Greenhouse gases emissions: estimating corporate non-reported emissions using interpretable machine learning," Working Papers hal-03905325, HAL.
    6. Maida Hadziosmanovic & Shannon M. Lloyd & Anders Bjørn & Raymond L. Paquin & Nadine Mengis & H. Damon Matthews, 2022. "Using cumulative carbon budgets and corporate carbon disclosure to inform ambitious corporate emissions targets and long‐term mitigation pathways," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1747-1759, October.
    7. Nguyen, Quyen & Diaz-Rainey, Ivan & Kuruppuarachchi, Duminda, 2021. "Predicting corporate carbon footprints for climate finance risk analyses: A machine learning approach," Energy Economics, Elsevier, vol. 95(C).
    8. Théophile Anquetin & Guillaume Coqueret & Bertrand Tavin & Lou Welgryn, 2022. "Scopes of carbon emissions and their impact on green portfolios," Post-Print hal-04144612, HAL.
    9. Christian Ott & Frank Schiemann, 2023. "The market value of decomposed carbon emissions," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 50(1-2), pages 3-30, January.
    10. Jeremi Assael & Thibaut Heurtebize & Laurent Carlier & François Soupé, 2023. "Greenhouse gas emissions: estimating corporate non-reported emissions using interpretable machine learning," Post-Print hal-03905325, HAL.
    11. Popescu, Ioana-Stefania & Gibon, Thomas & Hitaj, Claudia & Rubin, Mirco & Benetto, Enrico, 2023. "Are SRI funds financing carbon emissions? An input-output life cycle assessment of investment funds," Ecological Economics, Elsevier, vol. 212(C).
    12. Dewan Muktadir‐Al‐Mukit & Firoz Haroon Bhaiyat, 2024. "Impact of corporate governance diversity on carbon emission under environmental policy via the mandatory nonfinancial reporting regulation," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 1397-1417, February.
    13. Maximilian Hettler & Lorenz Graf‐Vlachy, 2024. "Corporate scope 3 carbon emission reporting as an enabler of supply chain decarbonization: A systematic review and comprehensive research agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 263-282, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:21:y:2017:i:5:p:1165-1179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.