IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v73y2017i4p1071-1081.html
   My bibliography  Save this article

A generalized Fellner‐Schall method for smoothing parameter optimization with application to Tweedie location, scale and shape models

Author

Listed:
  • Simon N. Wood
  • Matteo Fasiolo

Abstract

We consider the optimization of smoothing parameters and variance components in models with a regular log likelihood subject to quadratic penalization of the model coefficients, via a generalization of the method of Fellner (1986) and Schall (1991). In particular: (i) we generalize the original method to the case of penalties that are linear in several smoothing parameters, thereby covering the important cases of tensor product and adaptive smoothers; (ii) we show why the method's steps increase the restricted marginal likelihood of the model, that it tends to converge faster than the EM algorithm, or obvious accelerations of this, and investigate its relation to Newton optimization; (iii) we generalize the method to any Fisher regular likelihood. The method represents a considerable simplification over existing methods of estimating smoothing parameters in the context of regular likelihoods, without sacrificing generality: for example, it is only necessary to compute with the same first and second derivatives of the log‐likelihood required for coefficient estimation, and not with the third or fourth order derivatives required by alternative approaches. Examples are provided which would have been impossible or impractical with pre‐existing Fellner‐Schall methods, along with an example of a Tweedie location, scale and shape model which would be a challenge for alternative methods, and a sparse additive modeling example where the method facilitates computational efficiency gains of several orders of magnitude. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Suggested Citation

  • Simon N. Wood & Matteo Fasiolo, 2017. "A generalized Fellner‐Schall method for smoothing parameter optimization with application to Tweedie location, scale and shape models," Biometrics, The International Biometric Society, vol. 73(4), pages 1071-1081, December.
  • Handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1071-1081
    DOI: 10.1111/biom.12666
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12666
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    2. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    3. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patricio Maturana-Russel & Renate Meyer, 2021. "Bayesian spectral density estimation using P-splines with quantile-based knot placement," Computational Statistics, Springer, vol. 36(3), pages 2055-2077, September.
    2. Lambert, Philippe & Gressani, Oswaldo, 2022. "Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models," LIDAM Discussion Papers ISBA 2022030, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Kaiqiong Zhao & Karim Oualkacha & Lajmi Lakhal‐Chaieb & Aurélie Labbe & Kathleen Klein & Antonio Ciampi & Marie Hudson & Inés Colmegna & Tomi Pastinen & Tieyuan Zhang & Denise Daley & Celia M.T. Green, 2021. "A novel statistical method for modeling covariate effects in bisulfite sequencing derived measures of DNA methylation," Biometrics, The International Biometric Society, vol. 77(2), pages 424-438, June.
    4. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    5. Simon N Wood & Ernst C Wit, 2021. "Was R," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-19, September.
    6. Lambert, Philippe, 2021. "Fast Bayesian inference using Laplace approximations in nonparametric double additive location-scale models with right- and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    7. Simon N. Wood, 2022. "Inferring UK COVID‐19 fatal infection trajectories from daily mortality data: Were infections already in decline before the UK lockdowns?," Biometrics, The International Biometric Society, vol. 78(3), pages 1127-1140, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cornelius Fritz & Göran Kauermann, 2022. "On the interplay of regional mobility, social connectedness and the spread of COVID‐19 in Germany," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 400-424, January.
    2. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    3. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    4. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    5. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    6. Lambert, Philippe, 2021. "Fast Bayesian inference using Laplace approximations in nonparametric double additive location-scale models with right- and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    7. Frank van Berkum & Katrien Antonio & Michel Vellekoop, 2021. "Quantifying longevity gaps using micro‐level lifetime data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 548-570, April.
    8. Stefan Sperlich & Raoul Theler, 2015. "Modeling heterogeneity: a praise for varying-coefficient models in causal analysis," Computational Statistics, Springer, vol. 30(3), pages 693-718, September.
    9. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    10. Kunegel-Lion, Mélodie & Neilson, Eric W. & Mansuy, Nicolas & Goodsman, Devin W., 2022. "Habitat quality does not predict animal population abundance on frequently disturbed landscapes," Ecological Modelling, Elsevier, vol. 469(C).
    11. Umlauf, Nikolaus & Adler, Daniel & Kneib, Thomas & Lang, Stefan & Zeileis, Achim, 2015. "Structured Additive Regression Models: An R Interface to BayesX," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i21).
    12. Valtiala, Juho & Niskanen, Olli & Torvinen, Mikael & Riekkinen, Kirsikka & Suokannas, Antti, 2023. "The relationship between agricultural land parcel size and cultivation costs," Land Use Policy, Elsevier, vol. 131(C).
    13. Luca Scrucca, 2022. "A COVINDEX based on a GAM beta regression model with an application to the COVID-19 pandemic in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 881-900, October.
    14. Bo Sun & Derek T. Robinson, 2018. "Comparison of Statistical Approaches for Modelling Land-Use Change," Land, MDPI, vol. 7(4), pages 1-33, November.
    15. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
    16. Donoghoe Mark W. & Marschner Ian C., 2015. "Flexible Regression Models for Rate Differences, Risk Differences and Relative Risks," The International Journal of Biostatistics, De Gruyter, vol. 11(1), pages 91-108, May.
    17. Mengfei Ran & Yihe Yang, 2022. "Optimal Estimation of Large Functional and Longitudinal Data by Using Functional Linear Mixed Model," Mathematics, MDPI, vol. 10(22), pages 1-28, November.
    18. Tutz, Gerhard & Berger, Moritz, 2020. "The effect of explanatory variables on income: A tool that allows a closer look at the differences in income," Econometrics and Statistics, Elsevier, vol. 16(C), pages 28-41.
    19. François Freddy Ateba & Issaka Sagara & Nafomon Sogoba & Mahamoudou Touré & Drissa Konaté & Sory Ibrahim Diawara & Séidina Aboubacar Samba Diakité & Ayouba Diarra & Mamadou D. Coulibaly & Mathias Dolo, 2020. "Spatio-Temporal Dynamic of Malaria Incidence: A Comparison of Two Ecological Zones in Mali," IJERPH, MDPI, vol. 17(13), pages 1-21, June.
    20. Kaiqiong Zhao & Karim Oualkacha & Lajmi Lakhal‐Chaieb & Aurélie Labbe & Kathleen Klein & Antonio Ciampi & Marie Hudson & Inés Colmegna & Tomi Pastinen & Tieyuan Zhang & Denise Daley & Celia M.T. Green, 2021. "A novel statistical method for modeling covariate effects in bisulfite sequencing derived measures of DNA methylation," Biometrics, The International Biometric Society, vol. 77(2), pages 424-438, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1071-1081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.