IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v70y2014i3p671-682.html
   My bibliography  Save this article

An improved nonparametric lower bound of species richness via a modified good–turing frequency formula

Author

Listed:
  • Chun-Huo Chiu
  • Yi-Ting Wang
  • Bruno A. Walther
  • Anne Chao

Abstract

No abstract is available for this item.

Suggested Citation

  • Chun-Huo Chiu & Yi-Ting Wang & Bruno A. Walther & Anne Chao, 2014. "An improved nonparametric lower bound of species richness via a modified good–turing frequency formula," Biometrics, The International Biometric Society, vol. 70(3), pages 671-682, September.
  • Handle: RePEc:bla:biomet:v:70:y:2014:i:3:p:671-682
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12200
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anne Chao & Chih-Wei Lin, 2012. "Nonparametric Lower Bounds for Species Richness and Shared Species Richness under Sampling without Replacement," Biometrics, The International Biometric Society, vol. 68(3), pages 912-921, September.
    2. Lanumteang, K. & Böhning, D., 2011. "An extension of Chao's estimator of population size based on the first three capture frequency counts," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2302-2311, July.
    3. Ji-Ping Wang, 2010. "Estimating species richness by a Poisson-compound gamma model," Biometrika, Biometrika Trust, vol. 97(3), pages 727-740.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orasa Anan & Dankmar Böhning & Antonello Maruotti, 2017. "Population size estimation and heterogeneity in capture–recapture data: a linear regression estimator based on the Conway–Maxwell–Poisson distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 49-79, March.
    2. Chun-Huo Chiu, 2023. "A Richness Estimator Based on Integrated Data," Mathematics, MDPI, vol. 11(17), pages 1-24, September.
    3. Dankmar Böhning & Panicha Kaskasamkul & Peter G. M. Heijden, 2019. "A modification of Chao’s lower bound estimator in the case of one-inflation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(3), pages 361-384, April.
    4. Farcomeni, Alessio & Dotto, Francesco, 2021. "A correction to make Chao estimator conservative when the number of sampling occasions is finite," Statistics & Probability Letters, Elsevier, vol. 176(C).
    5. Ján Kulfan & Lenka Sarvašová & Michal Parák & Marek Dzurenko & Peter Zach, 2018. "Can late flushing trees avoid attack by moth larvae in temperate forests?," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 54(4), pages 272-283.
    6. Stilianos Louca & Florent Mazel & Michael Doebeli & Laura Wegener Parfrey, 2019. "A census-based estimate of Earth's bacterial and archaeal diversity," PLOS Biology, Public Library of Science, vol. 17(2), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farcomeni, Alessio & Dotto, Francesco, 2021. "A correction to make Chao estimator conservative when the number of sampling occasions is finite," Statistics & Probability Letters, Elsevier, vol. 176(C).
    2. repec:jss:jstsof:40:i09 is not listed on IDEAS
    3. Zhang, Hongmei & Ghosh, Kaushik & Ghosh, Pulak, 2012. "Sampling designs via a multivariate hypergeometric-Dirichlet process model for a multi-species assemblage with unknown heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2562-2573.
    4. Seungchul Baek & Junyong Park, 2022. "A computationally efficient approach to estimating species richness and rarefaction curve," Computational Statistics, Springer, vol. 37(4), pages 1919-1941, September.
    5. Marco Alfò & Dankmar Böhning & Irene Rocchetti, 2021. "Upper bound estimators of the population size based on ordinal models for capture‐recapture experiments," Biometrics, The International Biometric Society, vol. 77(1), pages 237-248, March.
    6. Chee, Chew-Seng & Wang, Yong, 2016. "Nonparametric estimation of species richness using discrete k-monotone distributions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 107-118.
    7. Li Zhang & Ying-Ying Zhang, 2022. "The Bayesian Posterior and Marginal Densities of the Hierarchical Gamma–Gamma, Gamma–Inverse Gamma, Inverse Gamma–Gamma, and Inverse Gamma–Inverse Gamma Models with Conjugate Priors," Mathematics, MDPI, vol. 10(21), pages 1-27, October.
    8. Durot, Cécile & Huet, Sylvie & Koladjo, François & Robin, Stéphane, 2013. "Least-squares estimation of a convex discrete distribution," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 282-298.
    9. Orasa Anan & Dankmar Böhning & Antonello Maruotti, 2017. "Population size estimation and heterogeneity in capture–recapture data: a linear regression estimator based on the Conway–Maxwell–Poisson distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 49-79, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:70:y:2014:i:3:p:671-682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.