IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/3000106.html
   My bibliography  Save this article

A census-based estimate of Earth's bacterial and archaeal diversity

Author

Listed:
  • Stilianos Louca
  • Florent Mazel
  • Michael Doebeli
  • Laura Wegener Parfrey

Abstract

The global diversity of Bacteria and Archaea, the most ancient and most widespread forms of life on Earth, is a subject of intense controversy. This controversy stems largely from the fact that existing estimates are entirely based on theoretical models or extrapolations from small and biased data sets. Here, in an attempt to census the bulk of Earth's bacterial and archaeal ("prokaryotic") clades and to estimate their overall global richness, we analyzed over 1.7 billion 16S ribosomal RNA amplicon sequences in the V4 hypervariable region obtained from 492 studies worldwide, covering a multitude of environments and using multiple alternative primers. From this data set, we recovered 739,880 prokaryotic operational taxonomic units (OTUs, 16S-V4 gene clusters at 97% similarity), a commonly used measure of microbial richness. Using several statistical approaches, we estimate that there exist globally about 0.8–1.6 million prokaryotic OTUs, of which we recovered somewhere between 47%–96%, representing >99.98% of prokaryotic cells. Consistent with this conclusion, our data set independently "recaptured" 91%–93% of 16S sequences from multiple previous global surveys, including PCR-independent metagenomic surveys. The distribution of relative OTU abundances is consistent with a log-normal model commonly observed in larger organisms; the total number of OTUs predicted by this model is also consistent with our global richness estimates. By combining our estimates with the ratio of full-length versus partial-length (V4) sequence diversity in the SILVA sequence database, we further estimate that there exist about 2.2–4.3 million full-length OTUs worldwide. When restricting our analysis to the Americas, while controlling for the number of studies, we obtain similar richness estimates as for the global data set, suggesting that most OTUs are globally distributed. Qualitatively similar results are also obtained for other 16S similarity thresholds (90%, 95%, and 99%). Our estimates constrain the extent of a poorly quantified rare microbial biosphere and refute recent predictions that there exist trillions of prokaryotic OTUs.A massive survey of Earth's Bacteria and Archaea reveals that their diversity is orders of magnitude lower than previously thought. The study also indicates that extinctions played an important role in prokaryotic evolution.Author summary: The global diversity of Bacteria and Archaea ("prokaryotes"), the most ancient and most widespread forms of life on Earth, is subject to high uncertainty. Here, to estimate the global diversity of prokaryotes, we analyzed a large number of 16S ribosomal RNA gene sequences, found in all prokaryotes and commonly used to catalogue prokaryotic diversity. Sequences were obtained from a multitude of environments across thousands of geographic locations worldwide. From this data set, we recovered 739,880 prokaryotic operational taxonomic units (OTUs), i.e., 16S gene clusters sharing 97% similarity, roughly corresponding to prokaryotic species. Using several statistical approaches and through comparison with existing databases and previous independent surveys, we estimate that there exist globally between 0.8 and 1.6 million prokaryotic OTUs. When restricting our analysis to the Americas, while controlling for the number of studies, we obtain similar estimates as for the global data set, suggesting that most OTUs are not restricted to a single continent but are instead globally distributed. Our estimates constrain the extent of a commonly hypothesized but poorly quantified rare prokaryotic biosphere and refute recent predictions that there exists trillions of prokaryotic OTUs. Our findings also indicate that, contrary to common speculation, extinctions may strongly influence global prokaryotic diversity.

Suggested Citation

  • Stilianos Louca & Florent Mazel & Michael Doebeli & Laura Wegener Parfrey, 2019. "A census-based estimate of Earth's bacterial and archaeal diversity," PLOS Biology, Public Library of Science, vol. 17(2), pages 1-30, February.
  • Handle: RePEc:plo:pbio00:3000106
    DOI: 10.1371/journal.pbio.3000106
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000106
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3000106&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.3000106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Louie Wurch & Richard J. Giannone & Bernard S. Belisle & Carolyn Swift & Sagar Utturkar & Robert L. Hettich & Anna-Louise Reysenbach & Mircea Podar, 2016. "Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
    2. Christopher T. Brown & Laura A. Hug & Brian C. Thomas & Itai Sharon & Cindy J. Castelle & Andrea Singh & Michael J. Wilkins & Kelly C. Wrighton & Kenneth H. Williams & Jillian F. Banfield, 2015. "Unusual biology across a group comprising more than 15% of domain Bacteria," Nature, Nature, vol. 523(7559), pages 208-211, July.
    3. Amy Willis & John Bunge, 2015. "Estimating diversity via frequency ratios," Biometrics, The International Biometric Society, vol. 71(4), pages 1042-1049, December.
    4. Wei Chen & Clarence K Zhang & Yongmei Cheng & Shaowu Zhang & Hongyu Zhao, 2013. "A Comparison of Methods for Clustering 16S rRNA Sequences into OTUs," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    5. Chun-Huo Chiu & Yi-Ting Wang & Bruno A. Walther & Anne Chao, 2014. "An improved nonparametric lower bound of species richness via a modified good–turing frequency formula," Biometrics, The International Biometric Society, vol. 70(3), pages 671-682, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dankmar Böhning & Panicha Kaskasamkul & Peter G. M. Heijden, 2019. "A modification of Chao’s lower bound estimator in the case of one-inflation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(3), pages 361-384, April.
    2. Ján Kulfan & Lenka Sarvašová & Michal Parák & Marek Dzurenko & Peter Zach, 2018. "Can late flushing trees avoid attack by moth larvae in temperate forests?," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 54(4), pages 272-283.
    3. Susanne Krause & Sabrina Gfrerer & Andriko Kügelgen & Carsten Reuse & Nina Dombrowski & Laura Villanueva & Boyke Bunk & Cathrin Spröer & Thomas R. Neu & Ute Kuhlicke & Kerstin Schmidt-Hohagen & Karste, 2022. "The importance of biofilm formation for cultivation of a Micrarchaeon and its interactions with its Thermoplasmatales host," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Jeongsu Oh & Chi-Hwan Choi & Min-Kyu Park & Byung Kwon Kim & Kyuin Hwang & Sang-Heon Lee & Soon Gyu Hong & Arshan Nasir & Wan-Sup Cho & Kyung Mo Kim, 2016. "CLUSTOM-CLOUD: In-Memory Data Grid-Based Software for Clustering 16S rRNA Sequence Data in the Cloud Environment," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-20, March.
    5. Kelly J. Whaley-Martin & Lin-Xing Chen & Tara Colenbrander Nelson & Jennifer Gordon & Rose Kantor & Lauren E. Twible & Stephanie Marshall & Sam McGarry & Laura Rossi & Benoit Bessette & Christian Baro, 2023. "O2 partitioning of sulfur oxidizing bacteria drives acidity and thiosulfate distributions in mining waters," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Farcomeni, Alessio & Dotto, Francesco, 2021. "A correction to make Chao estimator conservative when the number of sampling occasions is finite," Statistics & Probability Letters, Elsevier, vol. 176(C).
    7. Tara A. Mahendrarajah & Edmund R. R. Moody & Dominik Schrempf & Lénárd L. Szánthó & Nina Dombrowski & Adrián A. Davín & Davide Pisani & Philip C. J. Donoghue & Gergely J. Szöllősi & Tom A. Williams & , 2023. "ATP synthase evolution on a cross-braced dated tree of life," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Chun-Huo Chiu, 2023. "A Richness Estimator Based on Integrated Data," Mathematics, MDPI, vol. 11(17), pages 1-24, September.
    9. Antonia Bruno & Giulia Agostinetto & Sara Fumagalli & Giulia Ghisleni & Anna Sandionigi, 2022. "It’s a Long Way to the Tap: Microbiome and DNA-Based Omics at the Core of Drinking Water Quality," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    10. Natasha K. Dudek & Jesus G. Galaz-Montoya & Handuo Shi & Megan Mayer & Cristina Danita & Arianna I. Celis & Tobias Viehboeck & Gong-Her Wu & Barry Behr & Silvia Bulgheresi & Kerwyn Casey Huang & Wah C, 2023. "Previously uncharacterized rectangular bacterial structures in the dolphin mouth," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Taku Omura & Noriyuki Isobe & Takamasa Miura & Shun’ichi Ishii & Mihoko Mori & Yoshiyuki Ishitani & Satoshi Kimura & Kohei Hidaka & Katsuya Komiyama & Miwa Suzuki & Ken-ichi Kasuya & Hidetaka Nomaki &, 2024. "Microbial decomposition of biodegradable plastics on the deep-sea floor," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Amy Willis & John Bunge & Thea Whitman, 2017. "Improved detection of changes in species richness in high diversity microbial communities," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 963-977, November.
    13. Shaoming Gao & David Paez-Espino & Jintian Li & Hongxia Ai & Jieliang Liang & Zhenhao Luo & Jin Zheng & Hao Chen & Wensheng Shu & Linan Huang, 2022. "Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Orasa Anan & Dankmar Böhning & Antonello Maruotti, 2017. "Population size estimation and heterogeneity in capture–recapture data: a linear regression estimator based on the Conway–Maxwell–Poisson distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 49-79, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:3000106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.