IDEAS home Printed from https://ideas.repec.org/a/anm/alpnmr/v3y2015i2p27-34.html
   My bibliography  Save this article

Comparison Of Periodic-Review Inventory Control Policies In A Serial Supply Chain

Author

Listed:
  • Nihan Kabadayı
  • Timur Keskintürk

Abstract

Supply chain management provides customers with the right product or service at a reasonable price, in the right place, at the right time, and with the best quality possible, thus increasing customer satisfaction. The inventory is held at the multiple sites in a supply chain. Effective and efficient management of inventory in the supply chain process has a significant impact on improving the ultimate customer service provided to the customer. Reducing inventory cost, which is a major part of total supply chain costs, will help provide products or services at a better price. This study aims to compare (R, S) and (R, S, Qmin) inventory control policies in a serial supply chain. We develop a simulation based genetic algorithm (GA) in order to find the optimal numerical "S" value that minimizes the total supply chain cost (TSCC) and compare our results between two methods.

Suggested Citation

  • Nihan Kabadayı & Timur Keskintürk, 2015. "Comparison Of Periodic-Review Inventory Control Policies In A Serial Supply Chain," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 3(2), pages 27-34, December.
  • Handle: RePEc:anm:alpnmr:v:3:y:2015:i:2:p:27-34
    DOI: http://dx.doi.org/10.17093/aj.2015.3.2.5000148311
    as

    Download full text from publisher

    File URL: https://www.alphanumericjournal.com/media/Issue/volume-3-issue-2-2015/comparison-of-periodic-review-inventory-control-policies-in-_k4zwabT.pdf
    Download Restriction: no

    File URL: https://alphanumericjournal.com/article/comparison-of-periodic-review-inventory-control-policies-in-a-serial-supply-chain/
    Download Restriction: no

    File URL: https://libkey.io/http://dx.doi.org/10.17093/aj.2015.3.2.5000148311?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Petrovic, Dobrila & Roy, Rajat & Petrovic, Radivoj, 1998. "Modelling and simulation of a supply chain in an uncertain environment," European Journal of Operational Research, Elsevier, vol. 109(2), pages 299-309, September.
    2. Kiesmüller, G.P. & de Kok, A.G. & Dabia, S., 2011. "Single item inventory control under periodic review and a minimum order quantity," International Journal of Production Economics, Elsevier, vol. 133(1), pages 280-285, September.
    3. Azadivar, Farhad & Tompkins, George, 1999. "Simulation optimization with qualitative variables and structural model changes: A genetic algorithm approach," European Journal of Operational Research, Elsevier, vol. 113(1), pages 169-182, February.
    4. Sven Axsäter & Kaj Rosling, 1993. "Notes: Installation vs. Echelon Stock Policies for Multilevel Inventory Control," Management Science, INFORMS, vol. 39(10), pages 1274-1280, October.
    5. Zhou, Bin & Zhao, Yao & Katehakis, Michael N., 2007. "Effective control policies for stochastic inventory systems with a minimum order quantity and linear costs," International Journal of Production Economics, Elsevier, vol. 106(2), pages 523-531, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perera, Sandun & Janakiraman, Ganesh & Niu, Shun-Chen, 2017. "Optimality of (s, S) policies in EOQ models with general cost structures," International Journal of Production Economics, Elsevier, vol. 187(C), pages 216-228.
    2. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    3. Jong Soo Kim & Eunhee Jeon & Jiseong Noh & Jun Hyeong Park, 2018. "A Model and an Algorithm for a Large-Scale Sustainable Supplier Selection and Order Allocation Problem," Mathematics, MDPI, vol. 6(12), pages 1-19, December.
    4. Han Zhu, 2022. "A simple heuristic policy for stochastic inventory systems with both minimum and maximum order quantity requirements," Annals of Operations Research, Springer, vol. 309(1), pages 347-363, February.
    5. Muriel, Ana & Chugh, Tammana & Prokle, Michael, 2022. "Efficient algorithms for the joint replenishment problem with minimum order quantities," European Journal of Operational Research, Elsevier, vol. 300(1), pages 137-150.
    6. Klosterhalfen, Steffen T. & Holzhauer, Falk & Fleischmann, Moritz, 2018. "Control of a continuous production inventory system with production quantity restrictions," European Journal of Operational Research, Elsevier, vol. 268(2), pages 569-581.
    7. Shiyu Liu & Ou Liu & Xiaoming Jiang, 2023. "An Efficient Algorithm for the Joint Replenishment Problem with Quantity Discounts, Minimum Order Quantity and Transport Capacity Constraints," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    8. Zhu, Han & Liu, Xing & Chen, Youhua (Frank), 2015. "Effective inventory control policies with a minimum order quantity and batch ordering," International Journal of Production Economics, Elsevier, vol. 168(C), pages 21-30.
    9. Ben-Ammar, Oussama & Bettayeb, Belgacem & Dolgui, Alexandre, 2019. "Optimization of multi-period supply planning under stochastic lead times and a dynamic demand," International Journal of Production Economics, Elsevier, vol. 218(C), pages 106-117.
    10. Kull, Thomas & Closs, David, 2008. "The risk of second-tier supplier failures in serial supply chains: Implications for order policies and distributor autonomy," European Journal of Operational Research, Elsevier, vol. 186(3), pages 1158-1174, May.
    11. Tang, Christopher S. & Davarzani, Hoda & Sarkis, Joseph, 2015. "Quantitative models for managing supply chain risks: A reviewAuthor-Name: Fahimnia, Behnam," European Journal of Operational Research, Elsevier, vol. 247(1), pages 1-15.
    12. Hoberg, Kai & Thonemann, Ulrich W., 2014. "Modeling and analyzing information delays in supply chains using transfer functions," International Journal of Production Economics, Elsevier, vol. 156(C), pages 132-145.
    13. Kevin H. Shang & Jing-Sheng Song & Paul H. Zipkin, 2009. "Coordination Mechanisms in Decentralized Serial Inventory Systems with Batch Ordering," Management Science, INFORMS, vol. 55(4), pages 685-695, April.
    14. Cansu Kandemir & Holly A. H. Handley, 2019. "Work process improvement through simulation optimization of task assignment and mental workload," Computational and Mathematical Organization Theory, Springer, vol. 25(4), pages 389-427, December.
    15. Hellion, Bertrand & Mangione, Fabien & Penz, Bernard, 2012. "A polynomial time algorithm to solve the single-item capacitated lot sizing problem with minimum order quantities and concave costs," European Journal of Operational Research, Elsevier, vol. 222(1), pages 10-16.
    16. Sari, Kazim, 2010. "Exploring the impacts of radio frequency identification (RFID) technology on supply chain performance," European Journal of Operational Research, Elsevier, vol. 207(1), pages 174-183, November.
    17. Morteza Lalmazloumian & Kuan Yew Wong & Kannan Govindan & Devika Kannan, 2016. "A robust optimization model for agile and build-to-order supply chain planning under uncertainties," Annals of Operations Research, Springer, vol. 240(2), pages 435-470, May.
    18. Kevin H. Shang & Sean X. Zhou & Geert-Jan van Houtum, 2010. "Improving Supply Chain Performance: Real-Time Demand Information and Flexible Deliveries," Manufacturing & Service Operations Management, INFORMS, vol. 12(3), pages 430-448, May.
    19. Sven Axsäter & Johan Marklund, 2008. "Optimal Position-Based Warehouse Ordering in Divergent Two-Echelon Inventory Systems," Operations Research, INFORMS, vol. 56(4), pages 976-991, August.
    20. Liao, Shu-Hsien & Hu, Da-Chian & Ding, Li-Wen, 2017. "Assessing the influence of supply chain collaboration value innovation, supply chain capability and competitive advantage in Taiwan's networking communication industry," International Journal of Production Economics, Elsevier, vol. 191(C), pages 143-153.

    More about this item

    Keywords

    Genetic Algorithm; Inventory Management; Simulation-based Genetic Algorithm; Supply Chain Management;
    All these keywords.

    JEL classification:

    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anm:alpnmr:v:3:y:2015:i:2:p:27-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bahadir Fatih Yildirim (email available below). General contact details of provider: https://www.alphanumericjournal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.