IDEAS home Printed from https://ideas.repec.org/a/aid/journl/v4y2021i1p7-18.html
   My bibliography  Save this article

Financial Twitter Sentiment on Bitcoin Return and High-Frequency Volatility

Author

Listed:
  • Xiang Gao

    (Shanghai Business School, Shanghai, China)

  • Weige Huang

    (Zhongnan University of Economics and Law, Wuhan, China)

  • Hua Wang

    (Shenzhen Technology University, Shenzhen, China)

Abstract

This paper studies how sentiment affect Bitcoin pricing by examining, at an hourly frequency, the linkage between sentiment of finance-related Twitter messages and return as well as the volatility of Bitcoin as a financial asset. On the one hand, there was calculated the return from minute-level Bitcoin exchange quotes and use of both rolling variance and high-minus-low price to proxy for Bitcoin volatility per each trading hour. On the other hand, the mood signals from tweets were extracted based on a list of positive, negative, and uncertain words according to the Loughran-McDonald finance-specific dictionary. These signals were translated by categorizing each tweet into one of three sentiments, namely, bullish, bearish, and null. Then the total number of tweets were adopted in each category over one hour and their differences as potential Bitcoin price predictors. The empirical results indicate that after controlling a list of lagged returns and volatilities, stronger bullish sentiment significantly foreshadows higher Bitcoin return and volatility over the time range of 24 hours. While bearish and neutral financial Twitter sentiments have no such consistent performance, the difference between bullish and bearish ratings can improve prediction consistency. Overall, this research results add to the growing Bitcoin literature by demonstrating that the Bitcoin pricing mechanism can be partially revealed by the momentum on sentiment in social media networks, justifying a sentimental appetite for cryptocurrency investment.

Suggested Citation

  • Xiang Gao & Weige Huang & Hua Wang, 2021. "Financial Twitter Sentiment on Bitcoin Return and High-Frequency Volatility," Virtual Economics, The London Academy of Science and Business, vol. 4(1), pages 7-18, January.
  • Handle: RePEc:aid:journl:v:4:y:2021:i:1:p:7-18
    DOI: 10.34021/ve.2021.04.01(1)
    as

    Download full text from publisher

    File URL: https://virtual-economics.eu/index.php/VE/article/download/101/73
    Download Restriction: no

    File URL: https://libkey.io/10.34021/ve.2021.04.01(1)?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sun, Xiaolei & Liu, Mingxi & Sima, Zeqian, 2020. "A novel cryptocurrency price trend forecasting model based on LightGBM," Finance Research Letters, Elsevier, vol. 32(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yamashiro, Hirochika & Nonaka, Hirofumi, 2021. "Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem," Operations Research Perspectives, Elsevier, vol. 8(C).
    2. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    3. Alireza Rezazadeh & Yasamin Jafarian & Ali Kord, 2022. "Explainable Ensemble Machine Learning for Breast Cancer Diagnosis Based on Ultrasound Image Texture Features," Forecasting, MDPI, vol. 4(1), pages 1-13, February.
    4. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
    5. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
    6. Vaia I. Kontopoulou & Athanasios D. Panagopoulos & Ioannis Kakkos & George K. Matsopoulos, 2023. "A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks," Future Internet, MDPI, vol. 15(8), pages 1-31, July.
    7. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    8. Prof. Reepu & Prof.Bijesh Dhyani & Ms. Ayushi & Dr. Sudhi Sharma & Dr. Manish Kumar, 2022. "Predictive Modelling Of Select Cryptocurrencies And Identifying The Best Suitable Model - With Reference To Arima And Anns," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 6, pages 11-19, December.
    9. Xu Gong & Keqin Guan & Qiyang Chen, 2022. "The role of textual analysis in oil futures price forecasting based on machine learning approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1987-2017, October.
    10. Jinxin Wang & Chaoran Gao & Manman Wang & Yan Zhang, 2023. "Identification of Urban Functional Areas and Urban Spatial Structure Analysis by Fusing Multi-Source Data Features: A Case Study of Zhengzhou, China," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    11. Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    12. Bouri, Elie & Christou, Christina & Gupta, Rangan, 2022. "Forecasting returns of major cryptocurrencies: Evidence from regime-switching factor models," Finance Research Letters, Elsevier, vol. 49(C).
    13. Mingzhe Wei & Georgios Sermpinis & Charalampos Stasinakis, 2023. "Forecasting and trading Bitcoin with machine learning techniques and a hybrid volatility/sentiment leverage," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 852-871, July.
    14. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    15. Yanxi Zhao & Dengpan Xiao & Huizi Bai & Jianzhao Tang & De Li Liu & Yongqing Qi & Yanjun Shen, 2022. "The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
    16. Junfeng Kang & Xinyi Zou & Jianlin Tan & Jun Li & Hamed Karimian, 2023. "Short-Term PM 2.5 Concentration Changes Prediction: A Comparison of Meteorological and Historical Data," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    17. Liu, Chang & Sun, Xiaolei & Wang, Jun & Li, Jianping & Chen, Jianming, 2021. "Multiscale information transmission between commodity markets: An EMD-Based transfer entropy network," Research in International Business and Finance, Elsevier, vol. 55(C).
    18. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    19. Wang, Yang & Xiuping, Sui & Zhang, Qi, 2021. "Can fintech improve the efficiency of commercial banks? —An analysis based on big data," Research in International Business and Finance, Elsevier, vol. 55(C).
    20. Alexey Yu. Mikhaylov & Vikas Khare & Solomon Eghosa Uhunamure & Tsangyao Chang & Diana I. Stepanova, 2023. "Bitcoin Price Short-term Forecast Using Twitter Sentiment Analysis," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 4, pages 123-137, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aid:journl:v:4:y:2021:i:1:p:7-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Aleksy Kwilinski (email available below). General contact details of provider: https://edirc.repec.org/data/akwilin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.