IDEAS home Printed from https://ideas.repec.org/a/aea/aecrev/v110y2020i4p1206-30.html
   My bibliography  Save this article

A Theory of Experimenters: Robustness, Randomization, and Balance

Author

Listed:
  • Abhijit V. Banerjee
  • Sylvain Chassang
  • Sergio Montero
  • Erik Snowberg

Abstract

This paper studies the problem of experiment design by an ambiguity-averse decision-maker who trades off subjective expected performance against robust performance guarantees. This framework accounts for real-world experimenters' preference for randomization. It also clarifies the circumstances in which randomization is optimal: when the available sample size is large and robustness is an important concern. We apply our model to shed light on the practice of rerandomization, used to improve balance across treatment and control groups. We show that rerandomization creates a trade-off between subjective performance and robust performance guarantees. However, robust performance guarantees diminish very slowly with the number of rerandomizations. This suggests that moderate levels of rerandomization usefully expand the set of acceptable compromises between subjective performance and robustness. Targeting a fixed quantile of balance is safer than targeting an absolute balance objective.

Suggested Citation

  • Abhijit V. Banerjee & Sylvain Chassang & Sergio Montero & Erik Snowberg, 2020. "A Theory of Experimenters: Robustness, Randomization, and Balance," American Economic Review, American Economic Association, vol. 110(4), pages 1206-1230, April.
  • Handle: RePEc:aea:aecrev:v:110:y:2020:i:4:p:1206-30
    DOI: 10.1257/aer.20171634
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/doi/10.1257/aer.20171634
    Download Restriction: no

    File URL: https://doi.org/10.3886/E115410V2
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/aer.20171634.appx
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/aer.20171634.ds
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    File URL: https://libkey.io/10.1257/aer.20171634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy Allen & Pawel Dziewulski & John Rehbeck, 2019. "Revealed statistical consumer theory," Working Paper Series 1119, Department of Economics, University of Sussex Business School.
    2. Christina Korting & Carl Lieberman & Jordan Matsudaira & Zhuan Pei & Yi Shen, 2023. "Visual Inference and Graphical Representation in Regression Discontinuity Designs," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(3), pages 1977-2019.
    3. Maximilian Kasy & Jann Spiess, 2022. "Rationalizing Pre-Analysis Plans:Statistical Decisions Subject to Implementability," Economics Series Working Papers 975, University of Oxford, Department of Economics.
    4. Drazen, Allan & Dreber, Anna & Ozbay, Erkut Y. & Snowberg, Erik, 2021. "Journal-based replication of experiments: An application to “Being Chosen to Lead”," Journal of Public Economics, Elsevier, vol. 202(C).
    5. Sylvain Chassang & Rong Feng, 2020. "The Cost of Imbalance in Clinical Trials," Working Papers 2020-12, Princeton University. Economics Department..
    6. Maximilian Kasy & Jann Spiess, 2022. "Optimal Pre-Analysis Plans: Statistical Decisions Subject to Implementability," Papers 2208.09638, arXiv.org, revised Oct 2023.
    7. Bai, Yuehao, 2023. "Why randomize? Minimax optimality under permutation invariance," Journal of Econometrics, Elsevier, vol. 232(2), pages 565-575.
    8. Ke Zhu & Hanzhong Liu, 2023. "Pair‐switching rerandomization," Biometrics, The International Biometric Society, vol. 79(3), pages 2127-2142, September.
    9. Hennessy, Christopher A. & Chemla, Gilles, 2022. "Signaling, instrumentation, and CFO decision-making," Journal of Financial Economics, Elsevier, vol. 144(3), pages 849-863.
    10. Pathikrit Basu, 2023. "Mechanism design with model specification," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 61(2), pages 263-276, August.
    11. Laura Boudreau & Sylvain Chassang & Ada González-Torre & Rachel Heath, 2023. "Monitoring Harassment in Organizations," Working Papers 2022-19, Princeton University. Economics Department..
    12. Benjamin A. Olken, 2020. "Banerjee, Duflo, Kremer, and the Rise of Modern Development Economics," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(3), pages 853-878, July.
    13. Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
    14. Patil, Sanket & Salant, Yuval, 0. "Optimal sample sizes and statistical decision rules," Theoretical Economics, Econometric Society.
    15. Yang, Haoyu & Qin, Yichen & Wang, Fan & Li, Yang & Hu, Feifang, 2023. "Balancing covariates in multi-arm trials via adaptive randomization," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    16. Esposito Acosta,Bruno Nicola & Sautmann,Anja, 2022. "Adaptive Experiments for Policy Choice : Phone Calls for Home Reading in Kenya," Policy Research Working Paper Series 10098, The World Bank.
    17. Colo, Philippe, 2021. "Expert-based Knowledge: Communicating over Scientific Models," MPRA Paper 110434, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    2. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    3. Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
    4. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    5. Timothy B. Armstrong & Shu Shen, 2013. "Inference on Optimal Treatment Assignments," Cowles Foundation Discussion Papers 1927RR, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    6. Firpo, Sergio & Galvao, Antonio F. & Kobus, Martyna & Parker, Thomas & Rosa-Dias, Pedro, 2020. "Loss Aversion and the Welfare Ranking of Policy Interventions," IZA Discussion Papers 13176, Institute of Labor Economics (IZA).
    7. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    8. Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
    9. Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2018. "Inference on winners," CeMMAP working papers CWP31/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Aleksey Tetenov, 2016. "An economic theory of statistical testing," CeMMAP working papers 50/16, Institute for Fiscal Studies.
    11. Toru Kitagawa & Hugo Lopez & Jeff Rowley, 2022. "Stochastic Treatment Choice with Empirical Welfare Updating," Papers 2211.01537, arXiv.org, revised Feb 2023.
    12. Debopam Bhattacharya & Pascaline Dupas & Shin Kanaya, 2013. "Estimating the Impact of Means-tested Subsidies under Treatment Externalities with Application to Anti-Malarial Bednets," CREATES Research Papers 2013-06, Department of Economics and Business Economics, Aarhus University.
    13. Charles F. Manski & Aleksey Tetenov, 2014. "The Quantile Performance of Statistical Treatment Rules Using Hypothesis Tests to Allocate a Population to Two Treatments," CeMMAP working papers CWP44/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Davide Viviano & Kaspar Wuthrich & Paul Niehaus, 2021. "When should you adjust inferences for multiple hypothesis testing?," Papers 2104.13367, arXiv.org, revised Dec 2023.
    15. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    16. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Apr 2024.
    17. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    18. Keisuke Hirano & Jack R. Porter, 2016. "Panel Asymptotics and Statistical Decision Theory," The Japanese Economic Review, Japanese Economic Association, vol. 67(1), pages 33-49, March.
    19. Aleksey Tetenov, 2016. "An economic theory of statistical testing," CeMMAP working papers CWP50/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Jun 2023.

    More about this item

    JEL classification:

    • C90 - Mathematical and Quantitative Methods - - Design of Experiments - - - General
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aecrev:v:110:y:2020:i:4:p:1206-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.