IDEAS home Printed from https://ideas.repec.org/a/adp/ijesnr/v23y2020i4p185-188.html
   My bibliography  Save this article

A Brief Review on the Recycling of Decommissioned Power Battery Resources from EVs

Author

Listed:
  • Jie Tian
  • Yan Li
  • Yuming Zhao
  • Jinwen Ai

    (Shenzhen Power Supply Col Ltd, China)

  • Shouding Li
  • Qi Cheng

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, China)

Abstract

With the development of electric vehicles, the industry of lithium ion battery has greatly promoted. It is predicted that the market of global lithium ion battery is expected to reach $99.98 billion by 2025, with its absolute dominance in consumer electronics and electric vehicles. The rapid and massive introduction of lithium ion battery in vehicles will produce a large number of spent batteries in 10 years. It is important to recycle spent lithium ion batteries for sustainable production.

Suggested Citation

  • Jie Tian & Yan Li & Yuming Zhao & Jinwen Ai & Shouding Li & Qi Cheng, 2020. "A Brief Review on the Recycling of Decommissioned Power Battery Resources from EVs," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 23(4), pages 185-188, March.
  • Handle: RePEc:adp:ijesnr:v:23:y:2020:i:4:p:185-188
    DOI: 10.19080/IJESNR.2020.23.556125
    as

    Download full text from publisher

    File URL: https://juniperpublishers.com/ijesnr/pdf/IJESNR.MS.ID.556125.pdf
    Download Restriction: no

    File URL: https://juniperpublishers.com/ijesnr/IJESNR.MS.ID.556125.php
    Download Restriction: no

    File URL: https://libkey.io/10.19080/IJESNR.2020.23.556125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mai K. Tran & Marco-Tulio F. Rodrigues & Keiko Kato & Ganguli Babu & Pulickel M. Ajayan, 2019. "Deep eutectic solvents for cathode recycling of Li-ion batteries," Nature Energy, Nature, vol. 4(4), pages 339-345, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harper, Gavin D.J. & Kendrick, Emma & Anderson, Paul A. & Mrozik, Wojciech & Christensen, Paul & Lambert, Simon & Greenwood, David & Das, Prodip K. & Ahmeid, Mohamed & Milojevic, Zoran & Du, Wenjia & , 2023. "Roadmap for a sustainable circular economy in lithium-ion and future battery technologies," LSE Research Online Documents on Economics 118420, London School of Economics and Political Science, LSE Library.
    2. Jie Tian & Yan Li & Yuming Zhao & Jinwen Ai & Shouding Li & Qi Cheng, 2020. "A Brief Review on the Recycling of Decommissioned Power Battery Resources from EVs," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 23(4), pages 174-177, March.
    3. Golmohammadzadeh, Rabeeh & Faraji, Fariborz & Jong, Brian & Pozo-Gonzalo, Cristina & Banerjee, Parama Chakraborty, 2022. "Current challenges and future opportunities toward recycling of spent lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Liu, Ying & Yan, Hanzhao & Liu, Jia & Dong, Wanglai & Cao, Zhi & Hu, Xingbang & Zhou, Zheng, 2020. "Acidic deep eutectic solvents with long carbon chains as catalysts and reaction media for biodiesel production," Renewable Energy, Elsevier, vol. 162(C), pages 1842-1853.
    5. Koh, S.C.L. & Smith, L. & Miah, J. & Astudillo, D. & Eufrasio, R.M. & Gladwin, D. & Brown, S. & Stone, D., 2021. "Higher 2nd life Lithium Titanate battery content in hybrid energy storage systems lowers environmental-economic impact and balances eco-efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Kwiyong Kim & Darien Raymond & Riccardo Candeago & Xiao Su, 2021. "Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Keywords

    earth and environment journals; environment journals; open access environment journals; peer reviewed environmental journals; open access; juniper publishers; ournal of Environmental Sciences; juniper publishers journals ; juniper publishers reivew;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adp:ijesnr:v:23:y:2020:i:4:p:185-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Thomas (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.