IDEAS home Printed from https://ideas.repec.org/r/eee/stapro/v74y2005i2p187-204.html
   My bibliography  Save this item

Realistic variation of shock models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hazra, Nil Kamal & Finkelstein, Maxim & Cha, Ji Hwan, 2022. "On a hazard (failure) rate process with delays after shocks," Statistics & Probability Letters, Elsevier, vol. 181(C).
  2. Yi Jiang, 2020. "A new δ-shock model for systems subject to multiple failure types and its optimal order-replacement policy," Journal of Risk and Reliability, , vol. 234(1), pages 138-150, February.
  3. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal Mission Abort Policy for Systems Operating in a Random Environment," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 795-803, April.
  4. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
  5. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2016. "A warmstandby system under shocks and repair governed by MAPs," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 331-338.
  6. Finkelstein, Maxim & Marais, Francois, 2010. "On terminating Poisson processes in some shock models," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 874-879.
  7. Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2022. "On the general $$\delta $$ δ -shock model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 994-1029, December.
  8. Cirillo, Pasquale & Hüsler, Jürg, 2009. "An urn approach to generalized extreme shock models," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 969-976, April.
  9. Delia Montoro-Cazorla & Rafael Pérez-Ocón, 2022. "Analysis of k-Out-of-N-Systems with Different Units under Simultaneous Failures: A Matrix-Analytic Approach," Mathematics, MDPI, vol. 10(11), pages 1-13, June.
  10. Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2022. "On Properties of the Phase-type Mixed Poisson Process and its Applications to Reliability Shock Modeling," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2933-2960, December.
  11. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2018. "Constructing a Markov process for modelling a reliability system under multiple failures and replacements," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 34-47.
  12. Ji Cha & Maxim Finkelstein & Francois Marais, 2014. "Survival of systems with protection subject to two types of external attacks," Annals of Operations Research, Springer, vol. 212(1), pages 79-91, January.
  13. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2015. "A shock and wear model with dependence between the interarrival failures," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 339-352.
  14. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal abort rules for additive multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
  15. Gregory Levitin & Maxim Finkelstein & Hong‐Zhong Huang, 2019. "Optimal Abort Rules for Multiattempt Missions," Risk Analysis, John Wiley & Sons, vol. 39(12), pages 2732-2743, December.
  16. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal multi-attempt missions with cumulative effect," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
  17. Levitin, Gregory & Finkelstein, Maxim & Huang, Hong-Zong, 2020. "Optimal mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
  18. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal abort rules and subtask distribution in missions performed by multiple independent heterogeneous units," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
  19. Levitin, Gregory & Finkelstein, Maxim, 2018. "Optimal mission abort policy for systems in a random environment with variable shock rate," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 11-17.
  20. María Luz Gámiz & Delia Montoro-Cazorla & María del Carmen Segovia-García & Rafael Pérez-Ocón, 2022. "MoMA Algorithm: A Bottom-Up Modeling Procedure for a Modular System under Environmental Conditions," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
  21. Levitin, Gregory & Finkelstein, Maxim, 2019. "Optimal loading of elements in series systems exposed to external shocks," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
  22. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal mission abort policy with multiple shock number thresholds," Journal of Risk and Reliability, , vol. 232(6), pages 607-615, December.
  23. Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2022. "On the Time-Dependent Delta-Shock Model Governed by the Generalized PóLya Process," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1627-1650, September.
  24. Gregory Levitin & Maxim Finkelstein, 2017. "A new stress–strength model for systems subject to stochastic shocks," Journal of Risk and Reliability, , vol. 231(2), pages 172-179, April.
  25. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal aborting strategy for three-phase missions performed by multiple units," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
  26. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort and rescue for multistate systems operating under the Poisson process of shocks," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
  27. Ranjkesh, Somayeh Hamed & Hamadani, Ali Zeinal & Mahmoodi, Safieh, 2019. "A new cumulative shock model with damage and inter-arrival time dependency," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
  28. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal aborting rule in multi-attempt missions performed by multicomponent systems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 244-252.
  29. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "A redundant n-system under shocks and repairs following Markovian arrival processes," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 69-75.
  30. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Mission abort policy balancing the uncompleted mission penalty and system loss risk," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 194-201.
  31. Levitin, Gregory & Finkelstein, Maxim, 2017. "Effect of element separation in series-parallel systems exposed to random shocks," European Journal of Operational Research, Elsevier, vol. 260(1), pages 305-315.
  32. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Cai, Kui, 2018. "A multi-state shock model with mutative failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 1-11.
  33. Levitin, Gregory & Finkelstein, Maxim & Li, Yan-Feng, 2020. "Balancing mission success probability and risk of system loss by allocating redundancy in systems operating with a rescue option," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
  34. Cirillo, Pasquale & Hüsler, Jürg, 2011. "Extreme shock models: An alternative perspective," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 25-30, January.
  35. Eryilmaz, Serkan, 2015. "Assessment of a multi-state system under a shock model," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 1-8.
  36. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "Matrix stochastic analysis of the maintainability of a machine under shocks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 11-17.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.