IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v193y2020ics0951832019304806.html
   My bibliography  Save this article

Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment

Author

Listed:
  • Levitin, Gregory
  • Finkelstein, Maxim
  • Dai, Yuanshun

Abstract

This work considers a system consisting of two overlapping subsets of components. Availability of all components composing the subsets is required for performing the primary mission (PM) and the rescue procedure (RP) respectively. The system is exposed to random shocks during its operation. The components’ resistance to shocks deteriorates with the number of experienced shocks. Failure of any component from the PM subset results in the mission failure. To enhance the system's survivability, the PM can be aborted upon occurrence of the nth shock without waiting for the PM failure. In the case of PM failure or abortion, the RP is activated. If, at least one component from the RP subset does not survive all shocks occurring until completion of the RP, the system is lost. The choice of n should balance the mission success probability and the system survival probability. An algorithm for obtaining these metrics as functions of n is suggested and an example of analyzing the tradeoff between them is given. An example of obtaining the optimal mission abort policies is provided.

Suggested Citation

  • Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832019304806
    DOI: 10.1016/j.ress.2019.106590
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019304806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chaonan & Xing, Liudong & Peng, Rui & Pan, Zhusheng, 2017. "Competing failure analysis in phased-mission systems with multiple functional dependence groups," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 24-33.
    2. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Optimal mission abort policy for partially repairable heterogeneous systems," European Journal of Operational Research, Elsevier, vol. 271(3), pages 818-825.
    3. Toshio Nakagawa, 2007. "Shock and Damage Models in Reliability Theory," Springer Series in Reliability Engineering, Springer, number 978-1-84628-442-7, January.
    4. Peng, Rui, 2018. "Joint routing and aborting optimization of cooperative unmanned aerial vehicles," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 131-137.
    5. Maxim Finkelstein, 2008. "Failure Rate Modelling for Reliability and Risk," Springer Series in Reliability Engineering, Springer, number 978-1-84800-986-8, January.
    6. Maxim Finkelstein & Ji Hwan Cha, 2013. "Burn-in for Heterogeneous Populations," Springer Series in Reliability Engineering, in: Stochastic Modeling for Reliability, edition 127, chapter 0, pages 261-312, Springer.
    7. Qiu, Qingan & Cui, Lirong, 2019. "Gamma process based optimal mission abort policy," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    8. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2015. "Probabilistic common cause failures in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 53-60.
    9. Gut, Allan & Hüsler, Jürg, 2005. "Realistic variation of shock models," Statistics & Probability Letters, Elsevier, vol. 74(2), pages 187-204, September.
    10. Peng, Rui & Zhai, Qingqing & Xing, Liudong & Yang, Jun, 2014. "Reliability of demand-based phased-mission systems subject to fault level coverage," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 18-25.
    11. Levitin, Gregory & Finkelstein, Maxim, 2018. "Optimal mission abort policy for systems in a random environment with variable shock rate," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 11-17.
    12. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal Mission Abort Policy for Systems Operating in a Random Environment," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 795-803, April.
    13. Qiu, Qingan & Cui, Lirong, 2019. "Optimal mission abort policy for systems subject to random shocks based on virtual age process," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 11-20.
    14. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Co-optimization of state dependent loading and mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 151-158.
    15. Maxim Finkelstein & Ji Hwan Cha, 2013. "Shocks as Burn-in," Springer Series in Reliability Engineering, in: Stochastic Modeling for Reliability, edition 127, chapter 0, pages 313-361, Springer.
    16. Levitin, Gregory & Xing, Liudong & Luo, Liang, 2019. "Influence of failure propagation on mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 29-38.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal aborting rule in multi-attempt missions performed by multicomponent systems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 244-252.
    2. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal abort rules and subtask distribution in missions performed by multiple independent heterogeneous units," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    3. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal aborting strategy for three-phase missions performed by multiple units," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal mission abort policies for repairable multistate systems performing multi-attempt mission," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    5. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort and rescue for multistate systems operating under the Poisson process of shocks," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Levitin, Gregory & Finkelstein, Maxim & Li, Yan-Feng, 2020. "Balancing mission success probability and risk of system loss by allocating redundancy in systems operating with a rescue option," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    7. Gregory Levitin & Maxim Finkelstein & Hong‐Zhong Huang, 2019. "Optimal Abort Rules for Multiattempt Missions," Risk Analysis, John Wiley & Sons, vol. 39(12), pages 2732-2743, December.
    8. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal mission abort policy with multiple shock number thresholds," Journal of Risk and Reliability, , vol. 232(6), pages 607-615, December.
    9. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimal task sequencing and aborting in multi-attempt multi-task missions with a limited number of attempts," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    10. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal abort rules for additive multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    11. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    12. Qiu, Qingan & Cui, Lirong, 2019. "Gamma process based optimal mission abort policy," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    13. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal mission aborting in multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    14. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.
    15. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2021. "Dynamic task distribution balancing primary mission work and damage reduction work in parallel systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Levitin, Gregory & Finkelstein, Maxim & Huang, Hong-Zong, 2020. "Optimal mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Joint optimization of mission abort and component switching policies for multistate warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    18. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "State-based mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal multi-attempt missions with cumulative effect," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    20. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal inspections and mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832019304806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.