IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v195y2020ics0951832019308361.html
   My bibliography  Save this article

Balancing mission success probability and risk of system loss by allocating redundancy in systems operating with a rescue option

Author

Listed:
  • Levitin, Gregory
  • Finkelstein, Maxim
  • Li, Yan-Feng

Abstract

In many real-world safety-critical applications, a rescue procedure aimed at saving a system can be activated after its failure to execute a primary mission. For such systems, it is essential to keep the balance between the mission success probability and the system survival probability, as both of these contradicting metrics are extremely important in practice. This balance is achieved in the paper by solving the corresponding constrained redundancy optimization problem utilizing the innovative algorithmic approach. The developed methodology is applied to multicomponent systems with overlapping sets of components involved in primary and rescue phases of a mission, respectively. Each component is a subsystem that consists of parallel heterogeneous elements. The random environment in which the system operates is modeled by the Poisson shock process, whereas each shock can result in failures with given probabilities. The detailed numerical example illustrating optimal redundancy solutions is presented. Further directions for generalizations and applications of the obtained results are discussed.

Suggested Citation

  • Levitin, Gregory & Finkelstein, Maxim & Li, Yan-Feng, 2020. "Balancing mission success probability and risk of system loss by allocating redundancy in systems operating with a rescue option," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:reensy:v:195:y:2020:i:c:s0951832019308361
    DOI: 10.1016/j.ress.2019.106694
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019308361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Optimal mission abort policy for partially repairable heterogeneous systems," European Journal of Operational Research, Elsevier, vol. 271(3), pages 818-825.
    2. Toshio Nakagawa, 2007. "Shock and Damage Models in Reliability Theory," Springer Series in Reliability Engineering, Springer, number 978-1-84628-442-7, January.
    3. Ouzineb, Mohamed & Nourelfath, Mustapha & Gendreau, Michel, 2008. "Tabu search for the redundancy allocation problem of homogenous series–parallel multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1257-1272.
    4. Petrovic, Dobrila, 1991. "Decision support for improving systems reliability by redundancy," European Journal of Operational Research, Elsevier, vol. 55(3), pages 357-367, December.
    5. Eryilmaz, Serkan, 2017. "δ-shock model based on Polya process and its optimal replacement policy," European Journal of Operational Research, Elsevier, vol. 263(2), pages 690-697.
    6. Gen, Mitsuo & Yun, YoungSu, 2006. "Soft computing approach for reliability optimization: State-of-the-art survey," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1008-1026.
    7. Peng, Rui, 2018. "Joint routing and aborting optimization of cooperative unmanned aerial vehicles," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 131-137.
    8. Maxim Finkelstein, 2008. "Failure Rate Modelling for Reliability and Risk," Springer Series in Reliability Engineering, Springer, number 978-1-84800-986-8, January.
    9. Maxim Finkelstein & Ji Hwan Cha, 2013. "Burn-in for Heterogeneous Populations," Springer Series in Reliability Engineering, in: Stochastic Modeling for Reliability, edition 127, chapter 0, pages 261-312, Springer.
    10. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "A reliability system under different types of shock governed by a Markovian arrival process and maintenance policy K," European Journal of Operational Research, Elsevier, vol. 235(3), pages 636-642.
    11. Sung, C. S. & Cho, Y. K., 2000. "Reliability optimization of a series system with multiple-choice and budget constraints," European Journal of Operational Research, Elsevier, vol. 127(1), pages 159-171, November.
    12. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, January.
    13. Gut, Allan & Hüsler, Jürg, 2005. "Realistic variation of shock models," Statistics & Probability Letters, Elsevier, vol. 74(2), pages 187-204, September.
    14. Levitin, Gregory & Finkelstein, Maxim, 2018. "Optimal mission abort policy for systems in a random environment with variable shock rate," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 11-17.
    15. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal Mission Abort Policy for Systems Operating in a Random Environment," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 795-803, April.
    16. Qiu, Qingan & Cui, Lirong, 2019. "Optimal mission abort policy for systems subject to random shocks based on virtual age process," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 11-20.
    17. Zhao, Peng & Chan, Ping Shing & Ng, Hon Keung Tony, 2012. "Optimal allocation of redundancies in series systems," European Journal of Operational Research, Elsevier, vol. 220(3), pages 673-683.
    18. Ha, Chunghun & Kuo, Way, 2006. "Reliability redundancy allocation: An improved realization for nonconvex nonlinear programming problems," European Journal of Operational Research, Elsevier, vol. 171(1), pages 24-38, May.
    19. Caserta, Marco & Voß, Stefan, 2015. "An exact algorithm for the reliability redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 110-116.
    20. Zhao, Ruiqing & Liu, Baoding, 2004. "Redundancy optimization problems with uncertainty of combining randomness and fuzziness," European Journal of Operational Research, Elsevier, vol. 157(3), pages 716-735, September.
    21. Hsieh, Chung-Chi, 2003. "Optimal task allocation and hardware redundancy policies in distributed computing systems," European Journal of Operational Research, Elsevier, vol. 147(2), pages 430-447, June.
    22. Maxim Finkelstein & Ji Hwan Cha, 2013. "Shocks as Burn-in," Springer Series in Reliability Engineering, in: Stochastic Modeling for Reliability, edition 127, chapter 0, pages 313-361, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Levitin, Gregory & Xing, Liudong & Xiang, Yanping & Dai, Yuanshun, 2021. "Mixed failure-driven and shock-driven mission aborts in heterogeneous systems with arbitrary structure," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Mission aborting and system rescue for multi-state systems with arbitrary structure," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Liu, Lujie & Yang, Jun & Yan, Bingxin, 2024. "A dynamic mission abort policy for transportation systems with stochastic dependence by deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Wang, Xiaolin & Xu, Jihui & Zhang, Lei & Wang, Ning, 2023. "Mission success probability optimizing of phased mission system balancing the phase backup and system risk: A novel GERT mechanism," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal aborting rule in multi-attempt missions performed by multicomponent systems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 244-252.
    2. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal abort rules and subtask distribution in missions performed by multiple independent heterogeneous units," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    4. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal aborting strategy for three-phase missions performed by multiple units," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    5. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort and rescue for multistate systems operating under the Poisson process of shocks," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Levitin, Gregory & Finkelstein, Maxim & Huang, Hong-Zong, 2020. "Optimal mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    7. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "State-based mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal abort rules for additive multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    9. Gregory Levitin & Maxim Finkelstein & Hong‐Zhong Huang, 2019. "Optimal Abort Rules for Multiattempt Missions," Risk Analysis, John Wiley & Sons, vol. 39(12), pages 2732-2743, December.
    10. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal mission abort policies for repairable multistate systems performing multi-attempt mission," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal multi-attempt missions with cumulative effect," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    12. Qiu, Qingan & Cui, Lirong, 2019. "Gamma process based optimal mission abort policy," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    13. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal mission abort policy with multiple shock number thresholds," Journal of Risk and Reliability, , vol. 232(6), pages 607-615, December.
    14. Maxim Finkelstein & Gregory Levitin, 2020. "On missions’ quality of performance for systems with partially or completely observable degradation," Journal of Risk and Reliability, , vol. 234(5), pages 676-685, October.
    15. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimal task sequencing and aborting in multi-attempt multi-task missions with a limited number of attempts," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    16. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Optimal mission abort policy for partially repairable heterogeneous systems," European Journal of Operational Research, Elsevier, vol. 271(3), pages 818-825.
    17. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal inspections and mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    18. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Mission abort policy balancing the uncompleted mission penalty and system loss risk," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 194-201.
    19. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    20. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal mission aborting in multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:195:y:2020:i:c:s0951832019308361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.