IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v15y2011i2p981-992.html
   My bibliography  Save this item

Battery-ultracapacitor hybrids for pulsed current loads: A review

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Pedrayes, Joaquín F. & Melero, Manuel G. & Cano, José M. & Norniella, Joaquín G. & Orcajo, Gonzalo A. & Cabanas, Manés F. & Rojas, Carlos H., 2019. "Optimization of supercapacitor sizing for high-fluctuating power applications by means of an internal-voltage-based method," Energy, Elsevier, vol. 183(C), pages 504-513.
  2. Bizon, Nicu, 2013. "Energy efficiency for the multiport power converters architectures of series and parallel hybrid power source type used in plug-in/V2G fuel cell vehicles," Applied Energy, Elsevier, vol. 102(C), pages 726-734.
  3. Piotr Piórkowski & Adrian Chmielewski & Krzysztof Bogdziński & Jakub Możaryn & Tomasz Mydłowski, 2018. "Research on Ultracapacitors in Hybrid Systems: Case Study," Energies, MDPI, vol. 11(10), pages 1-13, September.
  4. Liu, Chang & Wang, Yujie & Chen, Zonghai, 2019. "Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system," Energy, Elsevier, vol. 166(C), pages 796-806.
  5. Iván Sanz-Gorrachategui & Carlos Bernal Ruiz & Estanis Oyarbide Usabiaga & Antonio Bono Nuez & Sergio Jesús Artal Sevil & Erik Garayalde Pérez & Iosu Aizpuru Larrañaga & Jose María Canales Segade, 2019. "Partial State-of-Charge Mitigation in Standalone Photovoltaic Hybrid Storage Systems," Energies, MDPI, vol. 12(22), pages 1-20, November.
  6. Bizon, Nicu, 2012. "Energy efficiency of multiport power converters used in plug-in/V2G fuel cell vehicles," Applied Energy, Elsevier, vol. 96(C), pages 431-443.
  7. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
  8. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
  9. Antti Lajunen & Panu Sainio & Lasse Laurila & Jenni Pippuri-Mäkeläinen & Kari Tammi, 2018. "Overview of Powertrain Electrification and Future Scenarios for Non-Road Mobile Machinery," Energies, MDPI, vol. 11(5), pages 1-22, May.
  10. Zhu, Wenhua H. & Tatarchuk, Bruce J., 2016. "Characterization of asymmetric ultracapacitors as hybrid pulse power devices for efficient energy storage and power delivery applications," Applied Energy, Elsevier, vol. 169(C), pages 460-468.
  11. Günther, Sebastian & Bensmann, Astrid & Hanke-Rauschenbach, Richard, 2018. "Theoretical dimensioning and sizing limits of hybrid energy storage systems," Applied Energy, Elsevier, vol. 210(C), pages 127-137.
  12. Khosrogorji, S. & Ahmadian, M. & Torkaman, H. & Soori, S., 2016. "Multi-input DC/DC converters in connection with distributed generation units – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 360-379.
  13. Dawei Chen & Wangqiang Niu & Wei Gu & Nigel Schofield, 2019. "Game-Based Energy Management Method for Hybrid RTG Cranes," Energies, MDPI, vol. 12(18), pages 1-23, September.
  14. Luta, Doudou N. & Raji, Atanda K., 2019. "Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications," Energy, Elsevier, vol. 166(C), pages 530-540.
  15. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
  16. Pedrayes, Joaquín F. & Melero, Manuel G. & Cano, Jose M. & Norniella, Joaquín G. & Duque, Salvador B. & Rojas, Carlos H. & Orcajo, Gonzalo A., 2021. "Lambert W function based closed-form expressions of supercapacitor electrical variables in constant power applications," Energy, Elsevier, vol. 218(C).
  17. Wang, Lili & Zhao, Dingxuan & Wang, Yao & Wang, Lei & Li, Yilei & Du, Miaomiao & Chen, Hanzhe, 2017. "Energy management strategy development of a forklift with electric lifting device," Energy, Elsevier, vol. 128(C), pages 435-446.
  18. Hemmati, Reza & Saboori, Hedayat, 2016. "Emergence of hybrid energy storage systems in renewable energy and transport applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 11-23.
  19. Jing, Wenlong & Lai, Chean Hung & Wong, Wallace S.H. & Wong, M.L. Dennis, 2018. "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification," Applied Energy, Elsevier, vol. 224(C), pages 340-356.
  20. Aditya Kachhwaha & Ghamgeen Izat Rashed & Akhil Ranjan Garg & Om Prakash Mahela & Baseem Khan & Muhammed Badeaa Shafik & Mohamed G. Hussien, 2022. "Design and Performance Analysis of Hybrid Battery and Ultracapacitor Energy Storage System for Electrical Vehicle Active Power Management," Sustainability, MDPI, vol. 14(2), pages 1-14, January.
  21. Laird, Cary & Kang, Ziliang & James, Kai A. & Alleyne, Andrew G., 2022. "Framework for integrated plant and control optimization of electro-thermal systems: An energy storage system case study," Energy, Elsevier, vol. 258(C).
  22. Théophile Paul & Tedjani Mesbahi & Sylvain Durand & Damien Flieller & Wilfried Uhring, 2020. "Sizing of Lithium-Ion Battery/Supercapacitor Hybrid Energy Storage System for Forklift Vehicle," Energies, MDPI, vol. 13(17), pages 1-18, September.
  23. Xu, X.M. & He, R., 2014. "Review on the heat dissipation performance of battery pack with different structures and operation conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 301-315.
  24. Chong, Lee Wai & Wong, Yee Wan & Rajkumar, Rajprasad Kumar & Rajkumar, Rajpartiban Kumar & Isa, Dino, 2016. "Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 174-189.
  25. Ren, Guizhou & Ma, Guoqing & Cong, Ning, 2015. "Review of electrical energy storage system for vehicular applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 225-236.
  26. Daniel F. Salas & Warren B. Powell, 2018. "Benchmarking a Scalable Approximate Dynamic Programming Algorithm for Stochastic Control of Grid-Level Energy Storage," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 106-123, February.
  27. Xi Luo & Jorge Varela Barreras & Clementine L. Chambon & Billy Wu & Efstratios Batzelis, 2021. "Hybridizing Lead–Acid Batteries with Supercapacitors: A Methodology," Energies, MDPI, vol. 14(2), pages 1-27, January.
  28. Bizon, Nicu, 2013. "Energy harvesting from the PV Hybrid Power Source," Energy, Elsevier, vol. 52(C), pages 297-307.
  29. Dong, Ao & Ma, Ruifei & Deng, Yelin, 2023. "Optimization on charging of the direct hybrid lithium-ion battery and supercapacitor for high power application through resistance balancing," Energy, Elsevier, vol. 273(C).
  30. Ma, Tao & Yang, Hongxing & Lu, Lin, 2015. "Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems," Applied Energy, Elsevier, vol. 153(C), pages 56-62.
  31. Fang Zhou & Feng Xiao & Cheng Chang & Yulong Shao & Chuanxue Song, 2017. "Adaptive Model Predictive Control-Based Energy Management for Semi-Active Hybrid Energy Storage Systems on Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1-21, July.
  32. Li, Jianwei & Yang, Qingqing & Robinson, Francis. & Liang, Fei & Zhang, Min & Yuan, Weijia, 2017. "Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system," Energy, Elsevier, vol. 118(C), pages 1110-1122.
  33. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.