IDEAS home Printed from https://ideas.repec.org/r/eee/reensy/v177y2018icp131-137.html
   My bibliography  Save this item

Joint routing and aborting optimization of cooperative unmanned aerial vehicles

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "State-based mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
  2. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining, 2024. "A Multistate Network Approach for Resilience Analysis of UAV Swarm considering Information Exchange Capacity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  3. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
  4. Zhu, Xiaoning & Yan, Rui & Peng, Rui & Zhang, Zhongxin, 2020. "Optimal routing, loading and aborting of UAVs executing both visiting tasks and transportation tasks," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
  5. Cheng, Guoqing & Shen, Jiayi & Wang, Fang & Li, Ling & Yang, Nan, 2024. "Optimal mission abort policy for a multi-component system with failure interaction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  6. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Optimal bivariate mission abort policy for systems operate in random shock environment," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
  7. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
  8. Yan, Rui & Zhu, Xiaoping & Zhu, Xiaoning & Peng, Rui, 2022. "Optimal routes and aborting strategies of trucks and drones under random attacks," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
  9. Qiu, Qingan & Cui, Lirong, 2019. "Gamma process based optimal mission abort policy," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
  10. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  11. Yaguang Wu, 2023. "Optimal Stopping and Loading Rules Considering Multiple Attempts and Task Success Criteria," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
  12. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal mission aborting in multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
  13. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal abort rules for additive multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
  14. Levitin, Gregory & Xing, Liudong & Luo, Liang, 2019. "Influence of failure propagation on mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 29-38.
  15. Gregory Levitin & Maxim Finkelstein & Hong‐Zhong Huang, 2019. "Optimal Abort Rules for Multiattempt Missions," Risk Analysis, John Wiley & Sons, vol. 39(12), pages 2732-2743, December.
  16. Liu, Lujie & Yang, Jun & Yan, Bingxin, 2024. "A dynamic mission abort policy for transportation systems with stochastic dependence by deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  17. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal multi-attempt missions with cumulative effect," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
  18. Cheng, Guoqing & Li, Ling & Shangguan, Chunxia & Yang, Nan & Jiang, Bo & Tao, Ningrong, 2023. "Optimal joint inspection and mission abort policy for a partially observable system," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
  19. Yaguang Wu & Qingan Qiu, 2022. "Optimal Triggering Policy of Protective Devices Considering Self-Exciting Mechanism of Shocks," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
  20. Levitin, Gregory & Finkelstein, Maxim & Huang, Hong-Zong, 2020. "Optimal mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
  21. Zhao, Xian & Sun, Jinglei & Qiu, Qingan & Chen, Ke, 2021. "Optimal inspection and mission abort policies for systems subject to degradation," European Journal of Operational Research, Elsevier, vol. 292(2), pages 610-621.
  22. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal abort rules and subtask distribution in missions performed by multiple independent heterogeneous units," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
  23. Yan, Rui & Zhu, Xiaoping & Zhu, Xiaoning & Peng, Rui, 2023. "Joint optimisation of task abortions and routes of truck-and-drone systems under random attacks," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
  24. Qiu, Qingan & Cui, Lirong, 2019. "Optimal mission abort policy for systems subject to random shocks based on virtual age process," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 11-20.
  25. Gregory Levitin & Liudong Xing & Yuanshun Dai, 2020. "Mission Abort Policy for Systems with Observable States of Standby Components," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1900-1912, October.
  26. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal inspections and mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
  27. Zhao, Xian & Wang, Xinlei & Dai, Ying & Qiu, Qingan, 2024. "Joint optimization of loading, mission abort and rescue site selection policies for UAV," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  28. Liu, Bing & Huang, Hao & Deng, Qiao, 2022. "On optimal condition based task termination policy for phased task systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
  29. Qiu, Qingan & Kou, Meng & Chen, Ke & Deng, Qiao & Kang, Fengming & Lin, Cong, 2021. "Optimal stopping problems for mission oriented systems considering time redundancy," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
  30. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal aborting strategy for three-phase missions performed by multiple units," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
  31. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort and rescue for multistate systems operating under the Poisson process of shocks," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
  32. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Joint optimization of mission abort and component switching policies for multistate warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
  33. Zhu, Xiaoning & Zhu, Xiaoping & Yan, Rui & Peng, Rui, 2021. "Optimal routing, aborting and hitting strategies of UAVs executing hitting the targets considering the defense range of targets," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  34. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2021. "Partial mission aborting in work sharing systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
  35. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.
  36. Fang, Chen & Chen, Jianhui & Qiu, Daizhen, 2024. "Reliability modeling for balanced systems considering mission abort policies," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  37. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal aborting rule in multi-attempt missions performed by multicomponent systems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 244-252.
  38. Zhao, Xian & Lv, Zuheng & Qiu, Qingan & Wu, Yaguang, 2023. "Designing two-level rescue depot location and dynamic rescue policies for unmanned vehicles," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
  39. Zhao, Xian & Liu, Haoran & Wu, Yaguang & Qiu, Qingan, 2023. "Joint optimization of mission abort and system structure considering dynamic tasks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  40. Zhao, Xian & Dai, Ying & Qiu, Qingan & Wu, Yaguang, 2022. "Joint optimization of mission aborts and allocation of standby components considering mission loss," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  41. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2021. "Dynamic task distribution balancing primary mission work and damage reduction work in parallel systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  42. Levitin, Gregory & Finkelstein, Maxim & Li, Yan-Feng, 2020. "Balancing mission success probability and risk of system loss by allocating redundancy in systems operating with a rescue option," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
  43. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal mission abort policies for repairable multistate systems performing multi-attempt mission," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
  44. Qiu, Qingan & Cui, Lirong & Wu, Bei, 2020. "Dynamic mission abort policy for systems operating in a controllable environment with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
  45. Rui Yan & Haotong Tian & Kaiye Gao & Rui Peng & Bin Liu, 2023. "A two-stage UAV routing problem with time window considering rescheduling with random delivery reliability," Journal of Risk and Reliability, , vol. 237(4), pages 781-797, August.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.