IDEAS home Printed from https://ideas.repec.org/r/eee/phsmap/v390y2011i23p4388-4395.html
   My bibliography  Save this item

Modified detrended fluctuation analysis based on empirical mode decomposition for the characterization of anti-persistent processes

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  2. Nava, Noemi & Di Matteo, T. & Aste, Tomaso, 2016. "Anomalous volatility scaling in high frequency financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 434-445.
  3. Lahmiri, Salim, 2017. "Multifractal analysis of Moroccan family business stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 183-191.
  4. Alvarez-Ramirez, J. & Rodriguez, E., 2018. "AR(p)-based detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 49-57.
  5. Dong Liu & Mingjie Luo & Qiang Fu & Yongjia Zhang & Khan Imran & Dan Zhao & Tianxiao Li & Faiz Abrar, 2016. "Precipitation Complexity Measurement Using Multifractal Spectra Empirical Mode Decomposition Detrended Fluctuation Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 505-522, January.
  6. Teng, Yue & Shang, Pengjian, 2018. "Detrended fluctuation analysis based on higher-order moments of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 311-322.
  7. Chattopadhyay, Anirban & Khondekar, Mofazzal H. & Bhattacharjee, Anup Kumar, 2018. "Fractality and singularity in CME linear speed signal: Cycle 23," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 542-550.
  8. Gulich, Damián & Zunino, Luciano, 2014. "A criterion for the determination of optimal scaling ranges in DFA and MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 17-30.
  9. Chai, Shanglei & Yang, Xiaoli & Zhang, Zhen & Abedin, Mohammad Zoynul & Lucey, Brian, 2022. "Regional imbalances of market efficiency in China’s pilot emission trading schemes (ETS): A multifractal perspective," Research in International Business and Finance, Elsevier, vol. 63(C).
  10. Caraiani, Petre, 2012. "Characterizing emerging European stock markets through complex networks: From local properties to self-similar characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(13), pages 3629-3637.
  11. Caraiani, Petre & Haven, Emmanuel, 2015. "Evidence of multifractality from CEE exchange rates against Euro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 395-407.
  12. Li Wang & Xing-Lu Gao & Wei-Xing Zhou, 2023. "Testing for intrinsic multifractality in the global grain spot market indices: A multifractal detrended fluctuation analysis," Papers 2306.10496, arXiv.org.
  13. Noemi Nava & T. Di Matteo & Tomaso Aste, 2015. "Anomalous volatility scaling in high frequency financial data," Papers 1503.08465, arXiv.org, revised Dec 2015.
  14. Hongli Niu & Jun Wang, 2014. "Phase and multifractality analyses of random price time series by finite-range interacting biased voter system," Computational Statistics, Springer, vol. 29(5), pages 1045-1063, October.
  15. Xu, Mengjia & Shang, Pengjian & Lin, Aijing, 2016. "Cross-correlation analysis of stock markets using EMD and EEMD," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 82-90.
  16. Lisi, Francesco & Nan, Fany, 2014. "Component estimation for electricity prices: Procedures and comparisons," Energy Economics, Elsevier, vol. 44(C), pages 143-159.
  17. Nurbanu Bursa & Hüseyin Tatlýdil, 2015. "Investigation of Credit Default Swaps using Detrended Fluctuation Analysis which is an Econophysical Technique," Eurasian Eononometrics, Statistics and Emprical Economics Journal, Eurasian Academy Of Sciences, vol. 2(2), pages 25-33, October.
  18. Lahmiri, Salim, 2015. "Long memory in international financial markets trends and short movements during 2008 financial crisis based on variational mode decomposition and detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 130-138.
  19. Cao, Guangxi & Xu, Wei, 2016. "Multifractal features of EUA and CER futures markets by using multifractal detrended fluctuation analysis based on empirical model decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 212-222.
  20. Lahmiri, Salim, 2017. "On fractality and chaos in Moroccan family business stock returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 29-39.
  21. Yao, Can-Zhong & Mo, Yi-Na & Zhang, Ze-Kun, 2021. "A study of the efficiency of the Chinese clean energy stock market and its correlation with the crude oil market based on an asymmetric multifractal scaling behavior analysis," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
  22. Fan, Qingju, 2016. "Asymmetric multiscale detrended fluctuation analysis of California electricity spot price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 252-260.
  23. Morales Martínez, Jorge Luis & Segovia-Domínguez, Ignacio & Rodríguez, Israel Quiros & Horta-Rangel, Francisco Antonio & Sosa-Gómez, Guillermo, 2021. "A modified Multifractal Detrended Fluctuation Analysis (MFDFA) approach for multifractal analysis of precipitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
  24. Petre Caraiani, 2012. "Evidence of Multifractality from Emerging European Stock Markets," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
  25. Kiyono, Ken & Tsujimoto, Yutaka, 2016. "Nonlinear filtering properties of detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 807-815.
  26. Gulich, Damián & Zunino, Luciano, 2012. "The effects of observational correlated noises on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4100-4110.
  27. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
  28. Suchetana Sadhukhan & Poulomi Sadhukhan, 2022. "Sector-wise analysis of Indian stock market: Long and short-term risk and stability analysis," Papers 2210.09619, arXiv.org.
  29. Dong Liu & Mingjie Luo & Qiang Fu & Yongjia Zhang & Khan M. Imran & Dan Zhao & Tianxiao Li & Faiz M. Abrar, 2016. "Precipitation Complexity Measurement Using Multifractal Spectra Empirical Mode Decomposition Detrended Fluctuation Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 505-522, January.
  30. Zhang, Bo & Wang, Jun & Fang, Wen, 2015. "Volatility behavior of visibility graph EMD financial time series from Ising interacting system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 301-314.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.