IDEAS home Printed from https://ideas.repec.org/r/eee/phsmap/v245y1997i3p423-436.html
   My bibliography  Save this item

Scaling in currency exchange

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Weron, Rafal & Weron, Karina & Weron, Aleksander, 1999. "A conditionally exponential decay approach to scaling in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 264(3), pages 551-561.
  2. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
  3. Guido Caldarelli & Matthieu Cristelli & Andrea Gabrielli & Luciano Pietronero & Antonio Scala & Andrea Tacchella, 2012. "A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
  4. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
  5. Selçuk BAYRACI, 2017. "Long-memory, self-similarity and scaling of the long-term government bond yields: Evidence from Turkey and the USA," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(3(612), A), pages 71-82, Autumn.
  6. Liehr, Stefan & Pawelzik, Klaus, 2000. "A trading strategy with variable investment from minimizing risk to profit ratio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 524-538.
  7. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
  8. Lin, Xiaoqiang & Tang, Zhenpeng & Fei, Fangyu, 2013. "Testing for relationships between Shanghai and Shenzhen stock markets: A threshold cointegration perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4064-4074.
  9. Mercik, Szymon & Weron, Rafal, 2002. "Origins of scaling in FX markets," MPRA Paper 2294, University Library of Munich, Germany.
  10. Baviera, Roberto & Vergni, Davide & Vulpiani, Angelo, 2000. "Markovian approximation in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 280(3), pages 566-581.
  11. Turiel, Antonio & Pérez-Vicente, Conrad J., 2005. "Role of multifractal sources in the analysis of stock market time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 475-496.
  12. Nicolò Pecora & Alessandro Spelta, 2014. "Shareholding Network in the Euro Area Banking Market," DISCE - Working Papers del Dipartimento di Economia e Finanza def014, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
  13. Schultze, Uta, 2000. "Insights from Physics into Development Processes: Are Fat Tails Interesting for Development Research?," Discussion Papers 280882, University of Bonn, Center for Development Research (ZEF).
  14. Michele Caraglio & Fulvio Baldovin & Attilio L. Stella, 2021. "How Fast Does the Clock of Finance Run?—A Time-Definition Enforcing Stationarity and Quantifying Overnight Duration," JRFM, MDPI, vol. 14(8), pages 1-15, August.
  15. Darbellay, Georges A & Wuertz, Diethelm, 2000. "The entropy as a tool for analysing statistical dependences in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 429-439.
  16. Seemann, Lars & McCauley, Joseph L. & Gunaratne, Gemunu H., 2011. "Intraday volatility and scaling in high frequency foreign exchange markets," International Review of Financial Analysis, Elsevier, vol. 20(3), pages 121-126, June.
  17. J. B. Glattfelder & A. Dupuis & R. B. Olsen, 2010. "Patterns in high-frequency FX data: discovery of 12 empirical scaling laws," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 599-614.
  18. Dai Pra, P. & Pigato, P., 2015. "Multi-scaling of moments in stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3725-3747.
  19. Pecora, Nicolò & Spelta, Alessandro, 2015. "Shareholding relationships in the Euro Area banking market: A network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 1-12.
  20. Nunes Amaral, Luís A & Buldyrev, Sergey V & Havlin, Shlomo & Maass, Philipp & Salinger, Michael A & Eugene Stanley, H & Stanley, Michael H.R, 1997. "Scaling behavior in economics: The problem of quantifying company growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 244(1), pages 1-24.
  21. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
  22. Matassini, Lorenzo & Franci, Fabio, 2001. "On financial markets trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 526-542.
  23. Nicol'o Musmeci & Stefano Battiston & Guido Caldarelli & Michelangelo Puliga & Andrea Gabrielli, 2012. "Bootstrapping topology and systemic risk of complex network using the fitness model," Papers 1209.6459, arXiv.org.
  24. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
  25. Bassler, Kevin E. & McCauley, Joseph L. & Gunaratne, Gemunu H., 2006. "Nonstationary increments, scaling distributions, and variable diffusion processes in financial markets," MPRA Paper 2126, University Library of Munich, Germany.
  26. Kang, Sang Hoon & Yoon, Seong-Min, 2007. "Long memory properties in return and volatility: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 591-600.
  27. Turiel, Antonio & Pérez-Vicente, Conrad J., 2003. "Multifractal geometry in stock market time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 629-649.
  28. Anton Golub & Gregor Chliamovitch & Alexandre Dupuis & Bastien Chopard, 2014. "Multi-scale Representation of High Frequency Market Liquidity," Papers 1402.2198, arXiv.org.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.