IDEAS home Printed from https://ideas.repec.org/r/eee/jomega/v18y1990i1p43-57.html
   My bibliography  Save this item

Dynamic job shop scheduling: A survey of simulation research

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kim, T.Y., 2018. "Improving warehouse responsiveness by job priority management," Econometric Institute Research Papers EI 2018-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  2. Land, Martin & Gaalman, Gerard, 1996. "Workload control concepts in job shops A critical assessment," International Journal of Production Economics, Elsevier, vol. 46(1), pages 535-548, December.
  3. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
  4. Rajendran, Chandrasekharan & Ziegler, Hans, 2001. "A performance analysis of dispatching rules and a heuristic in static flowshops with missing operations of jobs," European Journal of Operational Research, Elsevier, vol. 131(3), pages 622-634, June.
  5. Zhang, Rui & Chang, Pei-Chann & Wu, Cheng, 2013. "A hybrid genetic algorithm for the job shop scheduling problem with practical considerations for manufacturing costs: Investigations motivated by vehicle production," International Journal of Production Economics, Elsevier, vol. 145(1), pages 38-52.
  6. Beemsterboer, Bart & Land, Martin & Teunter, Ruud & Bokhorst, Jos, 2017. "Integrating make-to-order and make-to-stock in job shop control," International Journal of Production Economics, Elsevier, vol. 185(C), pages 1-10.
  7. Sarper, H. & Henry, M. C., 1996. "Combinatorial evaluation of six dispatching rules in a dynamic two-machine flow shop," Omega, Elsevier, vol. 24(1), pages 73-81, February.
  8. Rajendran, Chandrasekharan & Holthaus, Oliver, 1999. "A comparative study of dispatching rules in dynamic flowshops and jobshops," European Journal of Operational Research, Elsevier, vol. 116(1), pages 156-170, July.
  9. Wiers, V. C. S., 1997. "A review of the applicability of OR and AI scheduling techniques in practice," Omega, Elsevier, vol. 25(2), pages 145-153, April.
  10. Fernandes, Nuno Octavio & do Carmo-Silva, Silvio, 2006. "Generic POLCA--A production and materials flow control mechanism for quick response manufacturing," International Journal of Production Economics, Elsevier, vol. 104(1), pages 74-84, November.
  11. Seifert, Ralf W. & Morito, Susumu, 2001. "Cooperative dispatching - exploiting the flexibility of an FMS by means of incremental optimization," European Journal of Operational Research, Elsevier, vol. 129(1), pages 116-133, February.
  12. Li, Heng & Li, Zhicheng & Li, Ling X. & Hu, Bin, 2000. "A production rescheduling expert simulation system," European Journal of Operational Research, Elsevier, vol. 124(2), pages 283-293, July.
  13. Bonfatti, M. & Caridi, M. & Schiavina, L., 2006. "A fuzzy model for load-oriented manufacturing control," International Journal of Production Economics, Elsevier, vol. 104(2), pages 502-513, December.
  14. Ozturk, Atakan & Kayaligil, Sinan & Ozdemirel, Nur E., 2006. "Manufacturing lead time estimation using data mining," European Journal of Operational Research, Elsevier, vol. 173(2), pages 683-700, September.
  15. Branke, Juergen & Pickardt, Christoph W., 2011. "Evolutionary search for difficult problem instances to support the design of job shop dispatching rules," European Journal of Operational Research, Elsevier, vol. 212(1), pages 22-32, July.
  16. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2022. "Effective and interpretable dispatching rules for dynamic job shops via guided empirical learning," Omega, Elsevier, vol. 111(C).
  17. Xiong, Hegen & Fan, Huali & Jiang, Guozhang & Li, Gongfa, 2017. "A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with batch release and extended technical precedence constraints," European Journal of Operational Research, Elsevier, vol. 257(1), pages 13-24.
  18. D J Meade & S Kumar & B White, 2010. "Analysing the impact of the implementation of lean manufacturing strategies on profitability," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 858-871, May.
  19. Vinod, V. & Sridharan, R., 2011. "Simulation modeling and analysis of due-date assignment methods and scheduling decision rules in a dynamic job shop production system," International Journal of Production Economics, Elsevier, vol. 129(1), pages 127-146, January.
  20. Beemsterboer, Bart & Land, Martin & Teunter, Ruud & Bokhorst, Jos, 2017. "Reprint of “Integrating make-to-order and make-to-stock in job shop control”," International Journal of Production Economics, Elsevier, vol. 194(C), pages 3-12.
  21. Land, Martin J. & Gaalman, Gerard J.C., 1995. "Workload control concepts in job shops: a critical assessment," Research Report 95A42, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
  22. El-Bouri, Ahmed & Balakrishnan, Subramaniam & Popplewell, Neil, 2008. "Cooperative dispatching for minimizing mean flowtime in a dynamic flowshop," International Journal of Production Economics, Elsevier, vol. 113(2), pages 819-833, June.
  23. Land, Martin J. & Gaalman, Gerard J. C., 1998. "The performance of workload control concepts in job shops: Improving the release method," International Journal of Production Economics, Elsevier, vol. 56(1), pages 347-364, September.
  24. Holthaus, Oliver & Rajendran, Chandrasekharan, 1997. "Efficient dispatching rules for scheduling in a job shop," International Journal of Production Economics, Elsevier, vol. 48(1), pages 87-105, January.
  25. Kim, T.Y., 2018. "Improving warehouse responsiveness by job priority management," Econometric Institute Research Papers EI2018-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  26. Aytug, Haldun & Lawley, Mark A. & McKay, Kenneth & Mohan, Shantha & Uzsoy, Reha, 2005. "Executing production schedules in the face of uncertainties: A review and some future directions," European Journal of Operational Research, Elsevier, vol. 161(1), pages 86-110, February.
  27. Pflughoeft, K. A. & Hutchinson, G. K. & Nazareth, D. L., 1996. "Intelligent decision support for flexible manufacturing: Design and implementation of a knowledge-based simulator," Omega, Elsevier, vol. 24(3), pages 347-360, June.
  28. Ntuen, Celestine A. & Park, Eui H., 1995. "An experiment in scheduling and planning of non-structured jobs: Lessons learned from artificial intelligence and operational research toolbox," European Journal of Operational Research, Elsevier, vol. 84(1), pages 96-115, July.
  29. Chen, Binchao & Matis, Timothy I., 2013. "A flexible dispatching rule for minimizing tardiness in job shop scheduling," International Journal of Production Economics, Elsevier, vol. 141(1), pages 360-365.
  30. Kasper, T.A. Arno & Land, Martin J. & Teunter, Ruud H., 2023. "Towards System State Dispatching in High‐Variety Manufacturing," Omega, Elsevier, vol. 114(C).
  31. Jayamohan, M. S. & Rajendran, Chandrasekharan, 2004. "Development and analysis of cost-based dispatching rules for job shop scheduling," European Journal of Operational Research, Elsevier, vol. 157(2), pages 307-321, September.
  32. Reményi, Christoph & Staudacher, Stephan, 2014. "Systematic simulation based approach for the identification and implementation of a scheduling rule in the aircraft engine maintenance," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 94-107.
  33. Hankun Zhang & Borut Buchmeister & Xueyan Li & Robert Ojstersek, 2023. "An Efficient Metaheuristic Algorithm for Job Shop Scheduling in a Dynamic Environment," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
  34. Sabuncuoglu, I. & Comlekci, A., 2002. "Operation-based flowtime estimation in a dynamic job shop," Omega, Elsevier, vol. 30(6), pages 423-442, December.
  35. repec:dgr:rugsom:95a42 is not listed on IDEAS
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.