IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v86y2015icp385-392.html
   My bibliography  Save this item

Energy harvesting from a vehicle suspension system

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Cai, Qinlin & Zhu, Songye, 2022. "The nexus between vibration-based energy harvesting and structural vibration control: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  2. Turkmen, Anil Can & Celik, Cenk, 2018. "Energy harvesting with the piezoelectric material integrated shoe," Energy, Elsevier, vol. 150(C), pages 556-564.
  3. Bai, Shengxi & Liu, Chunhua, 2021. "Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
  4. Gao, Zepeng & Chen, Sizhong & Zhao, Yuzhuang & Liu, Zheng, 2019. "Numerical evaluation of compatibility between comfort and energy recovery based on energy flow mechanism inside electromagnetic active suspension," Energy, Elsevier, vol. 170(C), pages 521-536.
  5. Morangueira, Yuri L.A. & Pereira, José Carlos de C., 2020. "Energy harvesting assessment with a coupled full car and piezoelectric model," Energy, Elsevier, vol. 210(C).
  6. Saleh Alhumaid & Daniel Hess & Rasim Guldiken, 2022. "A Noncontact Magneto–Piezo Harvester-Based Vehicle Regenerative Suspension System: An Experimental Study," Energies, MDPI, vol. 15(12), pages 1-17, June.
  7. Abdelkareem, Mohamed A.A. & Zhang, Ran & Jing, Xingjian & Wang, Xu & Ali, Mohamed Kamal Ahmed, 2022. "Characterization and implementation of a double-sided arm-toothed indirect-drive rotary electromagnetic energy-harvesting shock absorber in a full semi-trailer truck suspension platform," Energy, Elsevier, vol. 239(PA).
  8. Alluri, Nagamalleswara Rao & Selvarajan, Sophia & Chandrasekhar, Arunkumar & Saravanakumar, Balasubramaniam & Lee, Gae Myoung & Jeong, Ji Hyun & Kim, Sang-Jae, 2017. "Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite," Energy, Elsevier, vol. 118(C), pages 1146-1155.
  9. Zhou, Ran & Yan, Mingyin & Sun, Feng & Jin, Junjie & Li, Qiang & Xu, Fangchao & Zhang, Ming & Zhang, Xiaoyou & Nakano, Kimihiko, 2022. "Experimental validations of a magnetic energy-harvesting suspension and its potential application for self-powered sensing," Energy, Elsevier, vol. 239(PC).
  10. Ran Zhang & Xu Wang & Sabu John, 2018. "A Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems," Energies, MDPI, vol. 11(5), pages 1-43, May.
  11. Viet, N.V. & Xie, X.D. & Liew, K.M. & Banthia, N. & Wang, Q., 2016. "Energy harvesting from ocean waves by a floating energy harvester," Energy, Elsevier, vol. 112(C), pages 1219-1226.
  12. Wang, Yilong & Yang, Zhengbao & Cao, Dengqing, 2021. "On the offset distance of rotational piezoelectric energy harvesters," Energy, Elsevier, vol. 220(C).
  13. Shi, Dehua & Pisu, Pierluigi & Chen, Long & Wang, Shaohua & Wang, Renguang, 2016. "Control design and fuel economy investigation of power split HEV with energy regeneration of suspension," Applied Energy, Elsevier, vol. 182(C), pages 576-589.
  14. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
  15. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & Elagouz, Ahmed & Mi, Jia & Guo, Sijing & Liu, Yilun & Zuo, Lei, 2018. "Vibration energy harvesting in automotive suspension system: A detailed review," Applied Energy, Elsevier, vol. 229(C), pages 672-699.
  16. Fan, Kangqi & Cai, Meiling & Liu, Haiyan & Zhang, Yiwei, 2019. "Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester," Energy, Elsevier, vol. 169(C), pages 356-368.
  17. Yu Jia & Shasha Li & Yu Shi, 2018. "An Analytical and Numerical Study of Magnetic Spring Suspension with Energy Recovery Capabilities," Energies, MDPI, vol. 11(11), pages 1-15, November.
  18. Zhang, Ran & Zhao, Liya & Qiu, Xiaojun & Zhang, Hui & Wang, Xu, 2020. "A comprehensive comparison of the vehicle vibration energy harvesting abilities of the regenerative shock absorbers predicted by the quarter, half and full vehicle suspension system models," Applied Energy, Elsevier, vol. 272(C).
  19. Issa, Mohamed & Samn, Anas, 2022. "Passive vehicle suspension system optimization using Harris Hawk Optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 328-345.
  20. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & El-Daly, Abdel-Rahman B.M. & Hassan, Mohamed A. & Elagouz, Ahmed & Bo, Yang, 2019. "Analysis of the prospective vibrational energy harvesting of heavy-duty truck suspensions: A simulation approach," Energy, Elsevier, vol. 173(C), pages 332-351.
  21. Chen, Shi-An & Jiang, Xu-Dong & Yao, Ming & Jiang, Shun-Ming & Chen, Jinzhou & Wang, Ya-Xiong, 2020. "A dual vibration reduction structure-based self-powered active suspension system with PMSM-ball screw actuator via an improved H2/H∞ control," Energy, Elsevier, vol. 201(C).
  22. Qian, Feng & Xu, Tian-Bing & Zuo, Lei, 2019. "Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism," Energy, Elsevier, vol. 189(C).
  23. Zuhaib Ashfaq Khan & Hafiz Husnain Raza Sherazi & Mubashir Ali & Muhammad Ali Imran & Ikram Ur Rehman & Prasun Chakrabarti, 2021. "Designing a Wind Energy Harvester for Connected Vehicles in Green Cities," Energies, MDPI, vol. 14(17), pages 1-18, August.
  24. Jasim, Abbas & Wang, Hao & Yesner, Greg & Safari, Ahmad & Maher, Ali, 2017. "Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway," Energy, Elsevier, vol. 141(C), pages 1133-1145.
  25. Wei, Chongfeng & Taghavifar, Hamid, 2017. "A novel approach to energy harvesting from vehicle suspension system: Half-vehicle model," Energy, Elsevier, vol. 134(C), pages 279-288.
  26. Doaa Al-Yafeai & Tariq Darabseh & Abdel-Hamid I. Mourad, 2020. "A State-Of-The-Art Review of Car Suspension-Based Piezoelectric Energy Harvesting Systems," Energies, MDPI, vol. 13(9), pages 1-39, May.
  27. Wang, Feng & Sun, Xiuting & Xu, Jian, 2018. "A novel energy harvesting device for ultralow frequency excitation," Energy, Elsevier, vol. 151(C), pages 250-260.
  28. Wong, Voon-Kean & Ho, Jee-Hou & Chai, Ai-Bao, 2017. "Performance of a piezoelectric energy harvester in actual rain," Energy, Elsevier, vol. 124(C), pages 364-371.
  29. Wafa Elmannai & Khaled Elleithy & Andrew Anthony Benz & Alberto Carmine DeAngelis & Nick Weaver, 2023. "An Enhanced Piezoelectric-Generated Power Technique for Qi Wireless Charging," Clean Technol., MDPI, vol. 5(1), pages 1-22, January.
  30. Salman, Waleed & Qi, Lingfei & Zhu, Xin & Pan, Hongye & Zhang, Xingtian & Bano, Shehar & Zhang, Zutao & Yuan, Yanping, 2018. "A high-efficiency energy regenerative shock absorber using helical gears for powering low-wattage electrical device of electric vehicles," Energy, Elsevier, vol. 159(C), pages 361-372.
  31. Long, Guimin & Ding, Fei & Zhang, Nong & Zhang, Jie & Qin, An, 2020. "Regenerative active suspension system with residual energy for in-wheel motor driven electric vehicle," Applied Energy, Elsevier, vol. 260(C).
  32. Xie, Xiangdong & Wang, Zijing & Zhang, Jiankun & Zhao, Yan & Du, Guofeng & Luo, Mingzhang & Lei, Ming, 2022. "A study on a novel piezoelectric bricks made of double-storey piezoelectric coupled beams," Energy, Elsevier, vol. 250(C).
  33. Yang, Fan & Gao, Mingyuan & Wang, Ping & Zuo, Jianyong & Dai, Jun & Cong, Jianli, 2021. "Efficient piezoelectric harvester for random broadband vibration of rail," Energy, Elsevier, vol. 218(C).
  34. Ghodsi, Mojtaba & Ziaiefar, Hamidreza & Mohammadzaheri, Morteza & Al-Yahmedi, Amur, 2019. "Modeling and characterization of permendur cantilever beam for energy harvesting," Energy, Elsevier, vol. 176(C), pages 561-569.
  35. Xie, Xiangdong & Wang, Zijing & Liu, Dezheng & Du, Guofeng & Zhang, Jinfeng, 2020. "An experimental study on a novel cylinder harvester made of L-shaped piezoelectric coupled beams with a high efficiency," Energy, Elsevier, vol. 212(C).
  36. Zhang, Yuxin & Guo, Konghui & Wang, Dai & Chen, Chao & Li, Xuefei, 2017. "Energy conversion mechanism and regenerative potential of vehicle suspensions," Energy, Elsevier, vol. 119(C), pages 961-970.
  37. Zhang, Yuxin & Chen, Hong & Guo, Konghui & Zhang, Xinjie & Eben Li, Shengbo, 2017. "Electro-hydraulic damper for energy harvesting suspension: Modeling, prototyping and experimental validation," Applied Energy, Elsevier, vol. 199(C), pages 1-12.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.