IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v63y2013icp1182-1195.html
   My bibliography  Save this item

Mechanisms blocking the dynamics of the European offshore wind energy innovation system – Challenges for policy intervention

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Stefan Ćetković & Aron Buzogány & Miranda Schreurs, 2016. "Varieties of clean energy transitions in Europe: Political-economic foundations of onshore and offshore wind development," WIDER Working Paper Series wp-2016-18, World Institute for Development Economic Research (UNU-WIDER).
  2. Polzin, Friedemann & von Flotow, Paschen & Klerkx, Laurens, 2016. "Addressing barriers to eco-innovation: Exploring the finance mobilisation functions of institutional innovation intermediaries," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 34-46.
  3. Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
  4. John Aldersey-Williams & Peter A. Strachan & Ian D. Broadbent, 2020. "Validating the “Seven Functions” Model of Technological Innovations Systems Theory with Industry Stakeholders—A Review from UK Offshore Renewables," Energies, MDPI, vol. 13(24), pages 1-21, December.
  5. Manuela Ingaldi & Dorota Klimecka-Tatar, 2020. "People’s Attitude to Energy from Hydrogen—From the Point of View of Modern Energy Technologies and Social Responsibility," Energies, MDPI, vol. 13(24), pages 1-19, December.
  6. Eleftheriadis, Iordanis M. & Anagnostopoulou, Evgenia G., 2015. "Identifying barriers in the diffusion of renewable energy sources," Energy Policy, Elsevier, vol. 80(C), pages 153-164.
  7. Reichardt, Kristin & Rogge, Karoline S. & Negro, Simona O., 2017. "Unpacking policy processes for addressing systemic problems in technological innovation systems: The case of offshore wind in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1217-1226.
  8. Kim, Yeong Jae & Wilson, Charlie, 2019. "Analysing energy innovation portfolios from a systemic perspective," Energy Policy, Elsevier, vol. 134(C).
  9. Jakub Sawulski & Marcin Galczynski & Robert Zajdler, 2018. "A review of the offshore wind innovation system in Poland," IBS Working Papers 06/2018, Instytut Badan Strukturalnych.
  10. Poulsen, Thomas & Lema, Rasmus, 2017. "Is the supply chain ready for the green transformation? The case of offshore wind logistics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 758-771.
  11. Normann, Håkon Endresen, 2017. "Policy networks in energy transitions: The cases of carbon capture and storage and offshore wind in Norway," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 80-93.
  12. Polzin, Friedemann, 2017. "Mobilizing private finance for low-carbon innovation – A systematic review of barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 525-535.
  13. Villani, Elisa & Rasmussen, Einar & Grimaldi, Rosa, 2017. "How intermediary organizations facilitate university–industry technology transfer: A proximity approach," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 86-102.
  14. Wei Gao & Daojuan Wang, 2021. "Will Increasing Government Subsidies Promote Open Innovation? A Simulation Analysis of China’s Wind Power Industry," Sustainability, MDPI, vol. 13(23), pages 1-20, December.
  15. Lawrence Haar, 2021. "Design Flaws in United Kingdom Renewable Energy Support Scheme," Energies, MDPI, vol. 14(6), pages 1-26, March.
  16. Zhu, Chunli & Wu, Jianping & Liu, Mingyu & Wang, Linyang & Li, Duowei & Kouvelas, Anastasios, 2021. "Recovery preparedness of global air transport influenced by COVID-19 pandemic: Policy intervention analysis," Transport Policy, Elsevier, vol. 106(C), pages 54-63.
  17. Håkon Endresen Normann, 2016. "Policy networks in energy transitions: The cases of carbon capture and storage and offshore wind in Norway," Working Papers on Innovation Studies 20161026, Centre for Technology, Innovation and Culture, University of Oslo.
  18. Dedecca, João Gorenstein & Hakvoort, Rudi A. & Ortt, J. Roland, 2016. "Market strategies for offshore wind in Europe: A development and diffusion perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 286-296.
  19. Sung, Bongsuk, 2019. "Do government subsidies promote firm-level innovation? Evidence from the Korean renewable energy technology industry," Energy Policy, Elsevier, vol. 132(C), pages 1333-1344.
  20. Wieczorek, Anna J. & Negro, Simona O. & Harmsen, Robert & Heimeriks, Gaston J. & Luo, Lin & Hekkert, Marko P., 2013. "A review of the European offshore wind innovation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 294-306.
  21. Mignon, Ingrid & Rüdinger, Andreas, 2016. "The impact of systemic factors on the deployment of cooperative projects within renewable electricity production – An international comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 478-488.
  22. Lian, Xiangpeng & Guo, Ying & Su, Jun, 2021. "Technology stocks: A study on the characteristics that help transfer public research to industry," Research Policy, Elsevier, vol. 50(10).
  23. Wouter Boon & Jakob Edler, 2018. "Demand, challenges, and innovation. Making sense of new trends in innovation policy," Science and Public Policy, Oxford University Press, vol. 45(4), pages 435-447.
  24. Andersen, Per Dannemand & Clausen, Niels-Erik & Cronin, Tom & Piirainen, Kalle A., 2018. "The North Sea Offshore Wind Service Industry: Status, perspectives and a joint action plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2672-2683.
  25. Bento, Nuno & Fontes, Margarida, 2019. "Emergence of floating offshore wind energy: Technology and industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 66-82.
  26. Piirainen, Kalle A. & Tanner, Anne Nygaard & Alkærsig, Lars, 2017. "Regional foresight and dynamics of smart specialization: A typology of regional diversification patterns," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 289-300.
  27. Sung, Bongsuk & Soh, Jin Young & Park, Chun Gun, 2022. "Comparing government support, firm heterogeneity, and inter-firm spillovers for productivity enhancement: Evidence from the Korean solar energy technology industry," Energy, Elsevier, vol. 246(C).
  28. Schaube, P. & Ise, A. & Clementi, L., 2022. "Distributed photovoltaic generation in Argentina: An analysis based on the technical innovation system framework," Technology in Society, Elsevier, vol. 68(C).
  29. Stefan Cetkovic & Aron Buzogány & Miranda Schreurs, 2016. "Varieties of clean energy transitions in Europe Political-economic foundations of onshore and offshore wind development," WIDER Working Paper Series 018, World Institute for Development Economic Research (UNU-WIDER).
  30. Geddes, Anna & Schmidt, Tobias S. & Steffen, Bjarne, 2018. "The multiple roles of state investment banks in low-carbon energy finance: An analysis of Australia, the UK and Germany," Energy Policy, Elsevier, vol. 115(C), pages 158-170.
  31. Morano, Pierluigi & Tajani, Francesco & Locurcio, Marco, 2017. "GIS application and econometric analysis for the verification of the financial feasibility of roof-top wind turbines in the city of Bari (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 999-1010.
  32. Andersson, Johnn & Perez Vico, Eugenia & Hammar, Linus & Sandén, Björn A., 2017. "The critical role of informed political direction for advancing technology: The case of Swedish marine energy," Energy Policy, Elsevier, vol. 101(C), pages 52-64.
  33. Verhees, Bram & Raven, Rob & Kern, Florian & Smith, Adrian, 2015. "The role of policy in shielding, nurturing and enabling offshore wind in The Netherlands (1973–2013)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 816-829.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.