IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v239y2014i1p227-236.html
   My bibliography  Save this item

Master surgery scheduling with consideration of multiple downstream units

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Shehadeh, Karmel S. & Padman, Rema, 2021. "A distributionally robust optimization approach for stochastic elective surgery scheduling with limited intensive care unit capacity," European Journal of Operational Research, Elsevier, vol. 290(3), pages 901-913.
  2. Rachuba, Sebastian & Imhoff, Lisa & Werners, Brigitte, 2022. "Tactical blueprints for surgical weeks – An integrated approach for operating rooms and intensive care units," European Journal of Operational Research, Elsevier, vol. 298(1), pages 243-260.
  3. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
  4. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
  5. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
  6. Penn, M.L. & Potts, C.N. & Harper, P.R., 2017. "Multiple criteria mixed-integer programming for incorporating multiple factors into the development of master operating theatre timetables," European Journal of Operational Research, Elsevier, vol. 262(1), pages 194-206.
  7. Şeyda Gür & Tamer Eren & Hacı Mehmet Alakaş, 2019. "Surgical Operation Scheduling with Goal Programming and Constraint Programming: A Case Study," Mathematics, MDPI, vol. 7(3), pages 1-24, March.
  8. Bovim, Thomas Reiten & Christiansen, Marielle & Gullhav, Anders N. & Range, Troels Martin & Hellemo, Lars, 2020. "Stochastic master surgery scheduling," European Journal of Operational Research, Elsevier, vol. 285(2), pages 695-711.
  9. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.
  10. A, Augustin & P, Jouvet & N, Lahrichi & A, Lodi & LM, Rousseau, 2022. "A data-driven approach to include availability of ICU beds in the planning of the operating room," Omega, Elsevier, vol. 109(C).
  11. Thomas Schneider, A.J. & Theresia van Essen, J. & Carlier, Mijke & Hans, Erwin W., 2020. "Scheduling surgery groups considering multiple downstream resources," European Journal of Operational Research, Elsevier, vol. 282(2), pages 741-752.
  12. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
  13. Jie Bai & Andreas Fügener & Jochen Gönsch & Jens O. Brunner & Manfred Blobner, 2021. "Managing admission and discharge processes in intensive care units," Health Care Management Science, Springer, vol. 24(4), pages 666-685, December.
  14. Miao Bai & Bjorn Berg & Esra Sisikoglu Sir & Mustafa Y. Sir, 2023. "Partially partitioned templating strategies for outpatient specialty practices," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 301-318, January.
  15. Rafael L. Patrão & Reinaldo C. Garcia & João M. da Silva, 2022. "An Integrated Two-Level Integer Linear Program (ILP) Model for Elective Surgery Scheduling: A Case Study in an Italian Hospital," Mathematics, MDPI, vol. 10(11), pages 1-18, June.
  16. Neyshabouri, Saba & Berg, Bjorn P., 2017. "Two-stage robust optimization approach to elective surgery and downstream capacity planning," European Journal of Operational Research, Elsevier, vol. 260(1), pages 21-40.
  17. Yuan Shi & Saied Mahdian & Jose Blanchet & Peter Glynn & Andrew Y. Shin & David Scheinker, 2023. "Surgical scheduling via optimization and machine learning with long-tailed data," Health Care Management Science, Springer, vol. 26(4), pages 692-718, December.
  18. Burdett, Robert L. & Kozan, Erhan, 2018. "An integrated approach for scheduling health care activities in a hospital," European Journal of Operational Research, Elsevier, vol. 264(2), pages 756-773.
  19. Steffen Heider & Jan Schoenfelder & Thomas Koperna & Jens O. Brunner, 2022. "Balancing control and autonomy in master surgery scheduling: Benefits of ICU quotas for recovery units," Health Care Management Science, Springer, vol. 25(2), pages 311-332, June.
  20. Alexander Hübner & Heinrich Kuhn & Manuel Walther, 2018. "Combining clinical departments and wards in maximum-care hospitals," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 679-709, July.
  21. Jie Bai & Andreas Fügener & Jan Schoenfelder & Jens O. Brunner, 2018. "Operations research in intensive care unit management: a literature review," Health Care Management Science, Springer, vol. 21(1), pages 1-24, March.
  22. Kamran Kianfar & Arezoo Atighehchian, 2023. "A hybrid heuristic approach to master surgery scheduling with downstream resource constraints and dividable operating room blocks," Annals of Operations Research, Springer, vol. 328(1), pages 727-754, September.
  23. Loïc Deklerck & Babak Akbarzadeh & Broos Maenhout, 2022. "Constructing and evaluating a master surgery schedule using a service-level approach," Operational Research, Springer, vol. 22(4), pages 3663-3711, September.
  24. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
  25. Xiangyong Li & N. Rafaliya & M. Fazle Baki & Ben A. Chaouch, 2017. "Scheduling elective surgeries: the tradeoff among bed capacity, waiting patients and operating room utilization using goal programming," Health Care Management Science, Springer, vol. 20(1), pages 33-54, March.
  26. Samuel Davis & Nasser Fard, 2020. "Theoretical bounds and approximation of the probability mass function of future hospital bed demand," Health Care Management Science, Springer, vol. 23(1), pages 20-33, March.
  27. Fabian Schäfer & Manuel Walther & Alexander Hübner & Heinrich Kuhn, 2019. "Operational patient-bed assignment problem in large hospital settings including overflow and uncertainty management," Flexible Services and Manufacturing Journal, Springer, vol. 31(4), pages 1012-1041, December.
  28. Andreas Fügener & Sebastian Schiffels & Rainer Kolisch, 2017. "Overutilization and underutilization of operating rooms - insights from behavioral health care operations management," Health Care Management Science, Springer, vol. 20(1), pages 115-128, March.
  29. Fabian Schäfer & Manuel Walther & Dominik G. Grimm & Alexander Hübner, 2023. "Combining machine learning and optimization for the operational patient-bed assignment problem," Health Care Management Science, Springer, vol. 26(4), pages 785-806, December.
  30. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
  31. van den Broek d’Obrenan, Anne & Ridder, Ad & Roubos, Dennis & Stougie, Leen, 2020. "Minimizing bed occupancy variance by scheduling patients under uncertainty," European Journal of Operational Research, Elsevier, vol. 286(1), pages 336-349.
  32. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.
  33. T. Meersman & B. Maenhout, 2022. "Multi-objective optimisation for constructing cyclic appointment schedules for elective and urgent patients," Annals of Operations Research, Springer, vol. 312(2), pages 909-948, May.
  34. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
  35. Fügener, Andreas & Pahr, Alexander & Brunner, Jens O., 2018. "Mid-term nurse rostering considering cross-training effects," International Journal of Production Economics, Elsevier, vol. 196(C), pages 176-187.
  36. Babak Akbarzadeh & Ghasem Moslehi & Mohammad Reisi-Nafchi & Broos Maenhout, 2020. "A diving heuristic for planning and scheduling surgical cases in the operating room department with nurse re-rostering," Journal of Scheduling, Springer, vol. 23(2), pages 265-288, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.