IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v261y2020ics0306261919320471.html
   My bibliography  Save this item

Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Qiang & Wei, Fanchao & Zhou, Yongcheng & Li, Jiajia & Zhou, Guowen & Wang, Zhonghao & Liu, Jinfu & Yan, Peigang & Yu, Daren, 2023. "A scheduling framework for VPP considering multiple uncertainties and flexible resources," Energy, Elsevier, vol. 282(C).
  2. Roksana Yasmin & B. M. Ruhul Amin & Rakibuzzaman Shah & Andrew Barton, 2024. "A Survey of Commercial and Industrial Demand Response Flexibility with Energy Storage Systems and Renewable Energy," Sustainability, MDPI, vol. 16(2), pages 1-41, January.
  3. White, Chris & Thompson, Ben & Swan, Lukas G., 2021. "Comparative performance study of electric vehicle batteries repurposed for electricity grid energy arbitrage," Applied Energy, Elsevier, vol. 288(C).
  4. Wang, Shuoqi & Guo, Dongxu & Han, Xuebing & Lu, Languang & Sun, Kai & Li, Weihan & Sauer, Dirk Uwe & Ouyang, Minggao, 2020. "Impact of battery degradation models on energy management of a grid-connected DC microgrid," Energy, Elsevier, vol. 207(C).
  5. Jinhyeong Park & Munsu Lee & Gunwoo Kim & Seongyun Park & Jonghoon Kim, 2020. "Integrated Approach Based on Dual Extended Kalman Filter and Multivariate Autoregressive Model for Predicting Battery Capacity Using Health Indicator and SOC/SOH," Energies, MDPI, vol. 13(9), pages 1-20, April.
  6. Paolo Scarabaggio & Raffaele Carli & Graziana Cavone & Mariagrazia Dotoli, 2020. "Smart Control Strategies for Primary Frequency Regulation through Electric Vehicles: A Battery Degradation Perspective," Energies, MDPI, vol. 13(17), pages 1-19, September.
  7. Berg, Kjersti & Rana, Rubi & Farahmand, Hossein, 2023. "Quantifying the benefits of shared battery in a DSO-energy community cooperation," Applied Energy, Elsevier, vol. 343(C).
  8. Hou, Qingchun & Yu, Yanghao & Du, Ershun & He, Hongjie & Zhang, Ning & Kang, Chongqing & Liu, Guojing & Zhu, Huan, 2020. "Embedding scrapping criterion and degradation model in optimal operation of peak-shaving lithium-ion battery energy storage," Applied Energy, Elsevier, vol. 278(C).
  9. Khaleghi, Sahar & Karimi, Danial & Beheshti, S. Hamidreza & Hosen, Md. Sazzad & Behi, Hamidreza & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network," Applied Energy, Elsevier, vol. 282(PA).
  10. Mircea Stefan Simoiu & Ioana Fagarasan & Stephane Ploix & Vasile Calofir, 2021. "Sizing and Management of an Energy System for a Metropolitan Station with Storage and Related District Energy Community," Energies, MDPI, vol. 14(18), pages 1-22, September.
  11. Sayfutdinov, Timur & Vorobev, Petr, 2022. "Optimal utilization strategy of the LiFePO4 battery storage," Applied Energy, Elsevier, vol. 316(C).
  12. Pedro Luis Camuñas García-Miguel & Donato Zarilli & Jaime Alonso-Martinez & Manuel García Plaza & Santiago Arnaltes Gómez, 2024. "Optimal Operation and Market Integration of a Hybrid Farm with Green Hydrogen and Energy Storage: A Stochastic Approach Considering Wind and Electricity Price Uncertainties," Sustainability, MDPI, vol. 16(7), pages 1-22, March.
  13. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  14. Afentoulis, Konstantinos D. & Bampos, Zafeirios N. & Vagropoulos, Stylianos I. & Keranidis, Stratos D. & Biskas, Pantelis N., 2022. "Smart charging business model framework for electric vehicle aggregators," Applied Energy, Elsevier, vol. 328(C).
  15. Steffen Limmer & Nils Einecke, 2022. "An Efficient Approach for Peak-Load-Aware Scheduling of Energy-Intensive Tasks in the Context of a Public IEEE Challenge," Energies, MDPI, vol. 15(10), pages 1-23, May.
  16. Jesús Muñoz-Cruzado-Alba & Rossano Musca & Javier Ballestín-Fuertes & José F. Sanz-Osorio & David Miguel Rivas-Ascaso & Michael P. Jones & Angelo Catania & Emil Goosen, 2021. "Power Grid Integration and Use-Case Study of Acid-Base Flow Battery Technology," Sustainability, MDPI, vol. 13(11), pages 1-27, May.
  17. Stanisław Maleczek & Marcin Szczepaniak & Norbert Radek & Stanisław Kowalkowski & Krzysztof A. Bogdanowicz, 2022. "Tests of Acid Batteries for Hybrid Energy Storage and Buffering System—A Technical Approach," Energies, MDPI, vol. 15(10), pages 1-10, May.
  18. Tope Roseline Olorunfemi & Nnamdi I. Nwulu, 2021. "Multi-Agent Based Optimal Operation of Hybrid Energy Sources Coupled with Demand Response Programs," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
  19. Zhou, Siyu & Han, Yang & Mahmoud, Karar & Darwish, Mohamed M.F. & Lehtonen, Matti & Yang, Ping & Zalhaf, Amr S., 2023. "A novel unified planning model for distributed generation and electric vehicle charging station considering multi-uncertainties and battery degradation," Applied Energy, Elsevier, vol. 348(C).
  20. Collath, Nils & Cornejo, Martin & Engwerth, Veronika & Hesse, Holger & Jossen, Andreas, 2023. "Increasing the lifetime profitability of battery energy storage systems through aging aware operation," Applied Energy, Elsevier, vol. 348(C).
  21. Park, Chybyung & Jeong, Byongug & Zhou, Peilin & Jang, Hayoung & Kim, Seongwan & Jeon, Hyeonmin & Nam, Dong & Rashedi, Ahmad, 2022. "Live-Life cycle assessment of the electric propulsion ship using solar PV," Applied Energy, Elsevier, vol. 309(C).
  22. Ahmed Gailani & Maher Al-Greer & Michael Short & Tracey Crosbie & Nashwan Dawood, 2020. "Lifetime Degradation Cost Analysis for Li-Ion Batteries in Capacity Markets using Accurate Physics-Based Models," Energies, MDPI, vol. 13(11), pages 1-21, June.
  23. Nandan Gopinathan & Prabhakar Karthikeyan Shanmugam, 2022. "Energy Anxiety in Decentralized Electricity Markets: A Critical Review on EV Models," Energies, MDPI, vol. 15(14), pages 1-40, July.
  24. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.
  25. Vykhodtsev, Anton V. & Jang, Darren & Wang, Qianpu & Rosehart, William & Zareipour, Hamidreza, 2022. "A review of modelling approaches to characterize lithium-ion battery energy storage systems in techno-economic analyses of power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
  26. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.