Advanced Search
MyIDEAS: Login to save this paper or follow this series

Linear statistical inference for global and local minimum variance portfolios

Contents:

Author Info

  • Frahm, Gabriel
Registered author(s):

    Abstract

    Traditional portfolio optimization has been often criticized since it does not account for estimation risk. Theoretical considerations indicate that estimation risk is mainly driven by the parameter uncertainty regarding the expected asset returns rather than their variances and covariances. This is also demonstrated by several numerical studies. The global minimum variance portfolio has been advocated by many authors as an appropriate alternative to the traditional Markowitz approach since there are no expected asset returns which have to be estimated and thus the impact of estimation errors can be substantially reduced. But in many practical situations an investor is not willing to choose the global minimum variance portfolio, especially in the context of top down portfolio optimization. In that case the investor has to minimize the variance of the portfolio return by satisfying some specific constraints for the portfolio weights. Such a portfolio will be called 'local minimum variance portfolio'. Some finite sample hypothesis tests for global and local minimum variance portfolios are presented as well as the unconditional finite sample distribution of the estimated portfolio weights and the first two moments of the estimated expected portfolio returns. --

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://econstor.eu/bitstream/10419/26739/1/527784133.PDF
    Download Restriction: no

    Bibliographic Info

    Paper provided by University of Cologne, Department for Economic and Social Statistics in its series Discussion Papers in Statistics and Econometrics with number 1/07.

    as in new window
    Length:
    Date of creation: 2007
    Date of revision:
    Handle: RePEc:zbw:ucdpse:107

    Contact details of provider:
    Postal: Albertus Magnus Platz, 50923 Köln
    Phone: 0221 / 470 5607
    Fax: 0221 / 470 5179
    Email:
    Web page: http://www.wisostat.uni-koeln.de/Englisch/index_en.html
    More information through EDIRC

    Related research

    Keywords: Estimation risk; linear regression theory; Markowitz portfolio; portfolio optimization; top down investment; minimum variance portfolio;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Klein, Roger W. & Bawa, Vijay S., 1976. "The effect of estimation risk on optimal portfolio choice," Journal of Financial Economics, Elsevier, vol. 3(3), pages 215-231, June.
    2. Okhrin, Yarema & Schmid, Wolfgang, 2006. "Distributional properties of portfolio weights," Journal of Econometrics, Elsevier, vol. 134(1), pages 235-256, September.
    3. Alexander Kempf & Christoph Memmel, 2006. "Estimating the global Minimum Variance Portfolio," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 58(4), pages 332-348, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:zbw:ucdpse:107. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.