IDEAS home Printed from https://ideas.repec.org/p/zbw/cauman/539.html
   My bibliography  Save this paper

Professional course scheduling in airline transport pilot training: A case from Lufthansa flight training

Author

Listed:
  • Schirmer, Andreas
  • Potzhar, Kathrin

Abstract

Several well-known and well-researched problem fields, such as school scheduling or university scheduling, reside in the realm of educational scheduling. Recently, some new course scheduling problems have begun to draw attention, which turn out to sport substantially more complex requirements and objectives than the classical course scheduling problems. We refer to their problem field as professional course scheduling. In order to demonstrate its practical relevance, we describe a real-world application. Lufthansa Flight Training GmbH (LFT) offers license, recurrency, emergency, and human factors training for airline, navy, and air force pilots as well as service and emergency training for cabin attendants of more than 50 airlines worldwide. This charges LFT with the problem to develop a monthly schedule for courses, instructors, and rooms that optimizes an objective function measuring adherence to seven different soft constraints while meeting a number of complex precedence, temporal, and resource-related constraints. In the past, LFT did all its scheduling manually, but management was dissatisfied with this process due to the significant cost and time involved. LFT commissioned us to carry out a feasibility study in which the applicability of operations research methods was to be demonstrated. We developed a prototype decision support system which utilizes construction and neighborhood search methods based upon concepts from project scheduling and graph theory. It turned out that significant improvements over the manual process could be realized; in addition, the algorithmic ideas employed are general enough to be easily adapted to other problems in the field of professional course scheduling. The development of a full-fledged decision support system is currently in progress at LFT.

Suggested Citation

  • Schirmer, Andreas & Potzhar, Kathrin, 2001. "Professional course scheduling in airline transport pilot training: A case from Lufthansa flight training," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 539, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  • Handle: RePEc:zbw:cauman:539
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/147617/1/manuskript_539.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ragunathan V, 1994. "IIMA Today - A Case of Depleted Networth," IIMA Working Papers WP1994-04-01_01259, Indian Institute of Management Ahmedabad, Research and Publication Department.
    2. Costa, Daniel, 1994. "A tabu search algorithm for computing an operational timetable," European Journal of Operational Research, Elsevier, vol. 76(1), pages 98-110, July.
    3. Cangalovic, Mirjana & Schreuder, Jan A. M., 1991. "Exact colouring algorithm for weighted graphs applied to timetabling problems with lectures of different lengths," European Journal of Operational Research, Elsevier, vol. 51(2), pages 248-258, March.
    4. Rainer Kolisch & Arno Sprecher & Andreas Drexl, 1995. "Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems," Management Science, INFORMS, vol. 41(10), pages 1693-1703, October.
    5. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.
    6. Scott E. Sampson & James R. Freeland & Elliott N. Weiss, 1995. "Class Scheduling to Maximize Participant Satisfaction," Interfaces, INFORMS, vol. 25(3), pages 30-41, June.
    7. Kolisch, Rainer & Hartmann, Sönke, 1999. "Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 10966, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. de Gans, Onno B., 1981. "A computer timetabling system for secondary schools in the Netherlands," European Journal of Operational Research, Elsevier, vol. 7(2), pages 175-182, June.
    9. Knut Haase & Jörg Latteier & Andreas Schirmer, 1999. "Course Planning at Lufthansa Technical Training: Constructing More Profitable Schedules," Interfaces, INFORMS, vol. 29(5), pages 95-109, October.
    10. Kang, Le & White, George M., 1992. "A logic approach to the resolution of constraints in timetabling," European Journal of Operational Research, Elsevier, vol. 61(3), pages 306-317, September.
    11. D. Abramson, 1991. "Constructing School Timetables Using Simulated Annealing: Sequential and Parallel Algorithms," Management Science, INFORMS, vol. 37(1), pages 98-113, January.
    12. Haase, Knut & Latteier, Jorg & Schirmer, Andreas, 1998. "The course scheduling problem at Lufthansa Technical Training," European Journal of Operational Research, Elsevier, vol. 110(3), pages 441-456, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schirmer, Andreas & Potzahr, Kathrin, 2001. "Lehrgangsplanung für die Ausbildung von Verkehrsflugzeugführern: Ergebnisse einer Studie bei Lufthansa Flight Training," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 538, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. Drexl, Andreas & Salewski, Frank, 1997. "Distribution requirements and compactness constraints in school timetabling," European Journal of Operational Research, Elsevier, vol. 102(1), pages 193-214, October.
    3. Haase, Knut & Latteier, Jörg & Schirmer, Andreas, 1997. "The course scheduling problem at Lufthansa Technical Training," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 441, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Haase, Knut & Latteier, Jörg & Schirmer, Andreas, 1997. "Course planning at Lufthansa technical training: Constructing more profitable schedules," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 442, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    5. Haase, Knut & Latteier, Jorg & Schirmer, Andreas, 1998. "The course scheduling problem at Lufthansa Technical Training," European Journal of Operational Research, Elsevier, vol. 110(3), pages 441-456, November.
    6. Knut Haase & Jörg Latteier & Andreas Schirmer, 1999. "Course Planning at Lufthansa Technical Training: Constructing More Profitable Schedules," Interfaces, INFORMS, vol. 29(5), pages 95-109, October.
    7. Dimopoulou, M. & Miliotis, P., 2001. "Implementation of a university course and examination timetabling system," European Journal of Operational Research, Elsevier, vol. 130(1), pages 202-213, April.
    8. Timothy R. Hinkin & Gary M. Thompson, 2002. "SchedulExpert: Scheduling Courses in the Cornell University School of Hotel Administration," Interfaces, INFORMS, vol. 32(6), pages 45-57, December.
    9. Anıl Can & Gündüz Ulusoy, 2014. "Multi-project scheduling with two-stage decomposition," Annals of Operations Research, Springer, vol. 217(1), pages 95-116, June.
    10. Schirmer, Armin, 1998. "Adaptive control schemes for parameterized heuristic scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 488, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    11. Hartmann, Sönke, 1999. "Self-adapting genetic algorithms with an application to project scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 506, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    12. Drexl, Andreas & Salewski, Frank, 1996. "Distribution Requirements and Compactness Constraints in School Timetabling. Part II: Methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 384, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    13. Shadrokh, Shahram & Kianfar, Fereydoon, 2007. "A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty," European Journal of Operational Research, Elsevier, vol. 181(1), pages 86-101, August.
    14. Zhenyuan Liu & Lei Xiao & Jing Tian, 2016. "An activity-list-based nested partitions algorithm for resource-constrained project scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4744-4758, August.
    15. Sönke Hartmann, 2002. "A self‐adapting genetic algorithm for project scheduling under resource constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(5), pages 433-448, August.
    16. Hartmann, Sönke, 2011. "Project scheduling with resource capacities and requests varying with time," Working Paper Series 01/2011, Hamburg School of Business Administration (HSBA).
    17. Hartmann, Sonke & Kolisch, Rainer, 2000. "Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 127(2), pages 394-407, December.
    18. Klein, Robert, 2000. "Bidirectional planning: improving priority rule-based heuristics for scheduling resource-constrained projects," European Journal of Operational Research, Elsevier, vol. 127(3), pages 619-638, December.
    19. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    20. Andreas Schirmer, 2000. "Case‐based reasoning and improved adaptive search for project scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(3), pages 201-222, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauman:539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/ibkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.