IDEAS home Printed from https://ideas.repec.org/p/zbw/cauman/505.html
   My bibliography  Save this paper

Network decomposition techniques for resource-constrained project scheduling

Author

Listed:
  • Sprecher, Arno

Abstract

Numerous exact algorithms have been developed for solving the resource-constrained project scheduling problem. Experimental studies have shown that currently even projects with only 60 activities cannot be optimally solved within a reasonable amount of time. Therefore heuristics employing genetic concepts, sampling strategies, simulated annealing or taboo search have been developed. Additionally truncated versions of the branch-and-bound algorithms are studied. By limiting the CPU-time, the total number of node evaluations, or the number of branching alternatives, the solution time is reduced at the expense of the quality of the generated schedules. The purpose of this paper is to study a combination of exact and heuristic elements. The project to be considered is decomposed into subprojects, the related subproblems are optimally solved, and the solutions are concatenated. The solution strategy has been implemented and tested on the benchmark instances provided by ProGen. The numerical results show that the decomposition approach outperforms the truncated version of the branch-and-bound algorithm employed. On average, the quality of the overall solution depends on the size of the subproblems, and the quality of the solutions of the subproblems. Consequently the approach will benefit from the progress made in the development of exact solution procedures.

Suggested Citation

  • Sprecher, Arno, 1999. "Network decomposition techniques for resource-constrained project scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 505, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  • Handle: RePEc:zbw:cauman:505
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/147593/1/manuskript_505.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sprecher, Arno & Kolisch, Rainer & Drexl, Andreas, 1995. "Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 80(1), pages 94-102, January.
    2. Kolisch, Rainer & Hartmann, Sönke, 1998. "Heuristic algorithms for solving the resource-constrained project scheduling problem: Classification and computational analysis," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 469, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    3. Rainer Kolisch & Arno Sprecher & Andreas Drexl, 1995. "Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems," Management Science, INFORMS, vol. 41(10), pages 1693-1703, October.
    4. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.
    5. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    6. Kolisch, Rainer & Sprecher, Arno, 1996. "PSPLIB - a project scheduling problem library," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 396, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    7. Aristide Mingozzi & Vittorio Maniezzo & Salvatore Ricciardelli & Lucio Bianco, 1998. "An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation," Management Science, INFORMS, vol. 44(5), pages 714-729, May.
    8. Erik L. Demeulemeester & Willy S. Herroelen, 1997. "New Benchmark Results for the Resource-Constrained Project Scheduling Problem," Management Science, INFORMS, vol. 43(11), pages 1485-1492, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hartmann, Sönke, 1999. "Self-adapting genetic algorithms with an application to project scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 506, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. Hartmann, Sönke, 2011. "Project scheduling with resource capacities and requests varying with time," Working Paper Series 01/2011, Hamburg School of Business Administration (HSBA).
    3. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    4. Sönke Hartmann, 1998. "A competitive genetic algorithm for resource‐constrained project scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(7), pages 733-750, October.
    5. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    6. Hartmann, Sonke & Kolisch, Rainer, 2000. "Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 127(2), pages 394-407, December.
    7. Klein, Robert, 2000. "Bidirectional planning: improving priority rule-based heuristics for scheduling resource-constrained projects," European Journal of Operational Research, Elsevier, vol. 127(3), pages 619-638, December.
    8. Chen, Jiaqiong & Askin, Ronald G., 2009. "Project selection, scheduling and resource allocation with time dependent returns," European Journal of Operational Research, Elsevier, vol. 193(1), pages 23-34, February.
    9. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    10. Debels, Dieter & De Reyck, Bert & Leus, Roel & Vanhoucke, Mario, 2006. "A hybrid scatter search/electromagnetism meta-heuristic for project scheduling," European Journal of Operational Research, Elsevier, vol. 169(2), pages 638-653, March.
    11. Arno Sprecher, 2000. "Scheduling Resource-Constrained Projects Competitively at Modest Memory Requirements," Management Science, INFORMS, vol. 46(5), pages 710-723, May.
    12. Schirmer, Armin, 1998. "Adaptive control schemes for parameterized heuristic scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 488, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    13. Andrei Horbach, 2010. "A Boolean satisfiability approach to the resource-constrained project scheduling problem," Annals of Operations Research, Springer, vol. 181(1), pages 89-107, December.
    14. Sophie Demassey & Christian Artigues & Philippe Michelon, 2005. "Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 52-65, February.
    15. Moehring, Rolf & Uetz, Marc & Stork, Frederik & Schulz, Andreas S., 2002. "Solving Project Scheduling Problems by Minimum Cut," Working papers 4231-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    16. Shadrokh, Shahram & Kianfar, Fereydoon, 2007. "A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty," European Journal of Operational Research, Elsevier, vol. 181(1), pages 86-101, August.
    17. Buddhakulsomsiri, Jirachai & Kim, David S., 2006. "Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting," European Journal of Operational Research, Elsevier, vol. 175(1), pages 279-295, November.
    18. Messelis, Tommy & De Causmaecker, Patrick, 2014. "An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 233(3), pages 511-528.
    19. Guo, Weikang & Vanhoucke, Mario & Coelho, José, 2023. "A prediction model for ranking branch-and-bound procedures for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 579-595.
    20. Gehring, Marco & Volk, Rebekka & Schultmann, Frank, 2022. "On the integration of diverging material flows into resource‐constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1071-1087.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauman:505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/ibkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.