Advanced Search
MyIDEAS: Login to save this paper or follow this series

Proxy simulation schemes using likelihood ratio weighted Monte Carlo for generic robust Monte-Carlo sensitivities and high accuracy drift approximation (with applications to the LIBOR Market Model)

Contents:

Author Info

  • Christian P. Fries

    (Universität Heidelberg)

  • Joerg Kampen

    (Universität Heidelberg)

Abstract

We consider a generic framework for generating likelihood ratio weighted Monte Carlo simulation paths, where we use one simulation scheme K° (proxy scheme) to generate realizations and then reinterpret them as realizations of another scheme K* (target scheme) by adjusting measure (via likelihood ratio) to match the distribution of K° such that E( f(K*) | F_t ) = E( f(K°) w | F_t ). This is done numerically in every time step, on every path. This makes the approach independent of the product (the function f) and even of the model, it only depends on the numerical scheme. The approach is essentially a numerical version of the likelihood ratio method [Broadie & Glasserman, 1996] and Malliavin's Calculus [Fournie et al., 1999; Malliavin, 1997] reconsidered on the level of the discrete numerical simulation scheme. Since the numerical scheme represents a time discrete stochastic process sampled on a discrete probability space the essence of the method may be motivated without a deeper mathematical understanding of the time continuous theory (e.g. Malliavin's Calculus). The framework is completely generic and may be used for high accuracy drift approximations and the robust calculation of partial derivatives of expectations w.r.t. model parameters (i.e. sensitivities, aka. Greeks) by applying finite differences by reevaluating the expectation with a model with shifted parameters. We present numerical results using a Monte-Carlo simulation of the LIBOR Market Model for benchmarking.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://128.118.178.162/eps/fin/papers/0504/0504010.pdf
Download Restriction: no

Bibliographic Info

Paper provided by EconWPA in its series Finance with number 0504010.

as in new window
Length: 27 pages
Date of creation: 12 Apr 2005
Date of revision:
Handle: RePEc:wpa:wuwpfi:0504010

Note: Type of Document - pdf; pages: 27
Contact details of provider:
Web page: http://128.118.178.162

Related research

Keywords: Monte-Carlo; Likelihood Ratio; Malliavin Calculus; Sensitivities; Greeks;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
  2. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
  3. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0504010. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.