Advanced Search
MyIDEAS: Login

A General Characterization of Quadratic Term Structure Models

Contents:

Author Info

  • Li Chen

    (Princeton University)

  • H. Vincent Poor

    (Princeton University)

Registered author(s):

Abstract

In this paper, we define a strongly regular quadratic Gaussian process to characterize quadratic term structure models (QTSMs) in a general Markov setting. The key of this definition is to keep the analytical tractability of QTSMs which has the quadratic term structure of the yield curve. In order to keep this property, under the regularity condition, we have proven that no jumps are allowed in the infinitesimal generator of the underlying state process. The coefficient functions defined in the quadratic Gaussian relationship can be decided by the multi-variate Riccati Equations with a unique admissible parameter set. Based on this result, we discuss the pricing problems of QTSMs under default-free and defaultable rates.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://128.118.178.162/eps/fin/papers/0211/0211008.pdf
Download Restriction: no

File URL: http://128.118.178.162/eps/fin/papers/0211/0211008.ps.gz
Download Restriction: no

Bibliographic Info

Paper provided by EconWPA in its series Finance with number 0211008.

as in new window
Length: 40 pages
Date of creation: 28 Nov 2002
Date of revision:
Handle: RePEc:wpa:wuwpfi:0211008

Note: Type of Document - Tex; prepared on IBM PC - PC-TEX; to print on PostScript; pages: 40 . We never published this piece and now we would like to reduce our mailing and xerox cost by posting it.
Contact details of provider:
Web page: http://128.118.178.162

Related research

Keywords: Quadratic Term Structure models; Markov Semigroup theory; Affine process;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Peng Cheng & Olivier Scaillet, 2002. "Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility," FAME Research Paper Series rp67, International Center for Financial Asset Management and Engineering.
  2. Sergei Levendorskii, 2002. "Pseudo-diffusions and Quadratic term structure models," Papers cond-mat/0212249, arXiv.org, revised Apr 2004.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0211008. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.