IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/370.html
   My bibliography  Save this paper

Reversing Momentum: The Optimal Dynamic Momentum Strategy

Author

Listed:

Abstract

We study the optimal dynamic trading strategy between a riskless asset and a risky asset with momentum (momentum asset). The most salient characteristic of momentum is that positive price shocks predict positive future returns. This characteristic leads to big swings in returns over multiple periods. Investors with relative risk aversion greater than one dislike such big swings. We show that it is optimal for such investors to reverse momentum by holding less or even shorting the momentum asset. We find that the optimal portfolio weight also depends on the historical price path, in addition to momentum. Different historical price paths, even if they have the same momentum, lead to different optimal portfolio weights. In particular, with rebound path (a historical price path that decreases at the beginning and then rebounds later to have a positive momentum), it is optimal for investors to hold less or may short the momentum asset and hence suffer less or even benefit from momentum crashes.

Suggested Citation

  • Kai Li & Jun Liu, 2016. "Reversing Momentum: The Optimal Dynamic Momentum Strategy," Research Paper Series 370, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:370
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-03/QFR-rp370.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Victor DeMiguel & Francisco J. Nogales & Raman Uppal, 2014. "Stock Return Serial Dependence and Out-of-Sample Portfolio Performance," The Review of Financial Studies, Society for Financial Studies, vol. 27(4), pages 1031-1073.
    3. Jérôme B. Detemple & Ren Garcia & Marcel Rindisbacher, 2003. "A Monte Carlo Method for Optimal Portfolios," Journal of Finance, American Finance Association, vol. 58(1), pages 401-446, February.
    4. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    5. Daniel, Kent & Moskowitz, Tobias J., 2016. "Momentum crashes," Journal of Financial Economics, Elsevier, vol. 122(2), pages 221-247.
    6. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    7. Cox, John C. & Huang, Chi-fu, 1991. "A variational problem arising in financial economics," Journal of Mathematical Economics, Elsevier, vol. 20(5), pages 465-487.
    8. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    9. Barroso, Pedro & Santa-Clara, Pedro, 2015. "Momentum has its moments," Journal of Financial Economics, Elsevier, vol. 116(1), pages 111-120.
    10. Zhu, Yingzi & Zhou, Guofu, 2009. "Technical analysis: An asset allocation perspective on the use of moving averages," Journal of Financial Economics, Elsevier, vol. 92(3), pages 519-544, June.
    11. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-161.
    12. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    13. Ralph S. J. Koijen & Juan Carlos Rodríguez & Alessandro Sbuelz, 2009. "Momentum and Mean Reversion in Strategic Asset Allocation," Management Science, INFORMS, vol. 55(7), pages 1199-1213, July.
    14. Jun Liu, 2007. "Portfolio Selection in Stochastic Environments," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 1-39, January.
    15. Moskowitz, Tobias J. & Ooi, Yao Hua & Pedersen, Lasse Heje, 2012. "Time series momentum," Journal of Financial Economics, Elsevier, vol. 104(2), pages 228-250.
    16. Poterba, James M. & Summers, Lawrence H., 1988. "Mean reversion in stock prices : Evidence and Implications," Journal of Financial Economics, Elsevier, vol. 22(1), pages 27-59, October.
    17. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    18. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    19. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Dieci & Xue-Zhong He, 2018. "Heterogeneous Agent Models in Finance," Research Paper Series 389, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. He, Xue-Zhong & Li, Kai & Li, Youwei, 2018. "Asset allocation with time series momentum and reversal," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 441-457.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Xue-Zhong & Li, Kai & Li, Youwei, 2018. "Asset allocation with time series momentum and reversal," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 441-457.
    2. Munk, Claus, 2008. "Portfolio and consumption choice with stochastic investment opportunities and habit formation in preferences," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3560-3589, November.
    3. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    4. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    5. Anna Battauz & Marzia Donno & Alessandro Sbuelz, 2017. "Reaching nirvana with a defaultable asset?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 31-52, November.
    6. Lüders, Erik, 2002. "Asset Prices and Alternative Characterizations of the Pricing Kernel," ZEW Discussion Papers 02-10, ZEW - Leibniz Centre for European Economic Research.
    7. Ralph S. J. Koijen & Juan Carlos Rodríguez & Alessandro Sbuelz, 2009. "Momentum and Mean Reversion in Strategic Asset Allocation," Management Science, INFORMS, vol. 55(7), pages 1199-1213, July.
    8. Detemple, Jérôme & Garcia, René & Rindisbacher, Marcel, 2005. "Intertemporal asset allocation: A comparison of methods," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2821-2848, November.
    9. Chenxu Li & Olivier Scaillet & Yiwen Shen, 2020. "Wealth Effect on Portfolio Allocation in Incomplete Markets," Papers 2004.10096, arXiv.org, revised Aug 2021.
    10. Evan Gatev & Stephen A. Ross, 2000. "Rebels, Conformists, Contrarians and Momentum Traders," NBER Working Papers 7835, National Bureau of Economic Research, Inc.
    11. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    12. Thijs Kamma & Antoon Pelsser, 2019. "Near-Optimal Dynamic Asset Allocation in Financial Markets with Trading Constraints," Papers 1906.12317, arXiv.org, revised Oct 2019.
    13. Andrew Detzel & Hong Liu & Jack Strauss & Guofu Zhou & Yingzi Zhu, 2021. "Learning and predictability via technical analysis: Evidence from bitcoin and stocks with hard‐to‐value fundamentals," Financial Management, Financial Management Association International, vol. 50(1), pages 107-137, March.
    14. Bernard Dumas & Alexander Kurshev & Raman Uppal, 2009. "Equilibrium Portfolio Strategies in the Presence of Sentiment Risk and Excess Volatility," Journal of Finance, American Finance Association, vol. 64(2), pages 579-629, April.
    15. Lioui, Abraham & Poncet, Patrice, 2003. "International asset allocation: A new perspective," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2203-2230, November.
    16. Alois Geyer & Michael Hanke & Alex Weissensteiner, 2009. "A stochastic programming approach for multi-period portfolio optimization," Computational Management Science, Springer, vol. 6(2), pages 187-208, May.
    17. Larsen, Linda Sandris, 2010. "Optimal investment strategies in an international economy with stochastic interest rates," International Review of Economics & Finance, Elsevier, vol. 19(1), pages 145-165, January.
    18. Chenxu Li & O. Scaillet & Yiwen Shen, 2020. "Decomposition of Optimal Dynamic Portfolio Choice with Wealth-Dependent Utilities in Incomplete Markets," Swiss Finance Institute Research Paper Series 20-22, Swiss Finance Institute.
    19. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    20. Schroder, Mark & Skiadas, Costis, 1999. "Optimal Consumption and Portfolio Selection with Stochastic Differential Utility," Journal of Economic Theory, Elsevier, vol. 89(1), pages 68-126, November.

    More about this item

    Keywords

    portfolio selection; momentum crashes; dynamic optimal momentum strategy;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.