Advanced Search
MyIDEAS: Login to save this paper or follow this series

Simulation of Diversified Portfolios in a Continuous Financial Market

Contents:

Author Info

Abstract

In this paper we analyze the simulated behavior of diversified portfolios in a continuous financial market. In particular, we focus on equally weighted portfolios. We illustrate that these well diversified portfolios constitute good proxies of the growth optimal portfolio. The multi-asset market models considered include the Black-Scholes model, the Heston model, the ARCH diffusion model, the geometric Ornstein-Uhlenbeck volatility model and the multi-currency minimal market model. The choice of these models was motivated by the fact that they can be simulated almost exactly and, therefore, very accurately also over longer periods of time. Finally, we provide examples, which demonstrate the robustness of the diversification phenomenon when approximating the growth optimal portfolio of a market by an equal value weighted portfolio. Significant out performance of the market capitalization weighted portfolio by the equal value weighted portfolio can be observed for models.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.business.uts.edu.au/qfrc/research/research_papers/rp264.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Quantitative Finance Research Centre, University of Technology, Sydney in its series Research Paper Series with number 264.

as in new window
Length: 32
Date of creation: 01 Dec 2009
Date of revision:
Handle: RePEc:uts:rpaper:264

Contact details of provider:
Postal: PO Box 123, Broadway, NSW 2007, Australia
Phone: +61 2 9514 7777
Fax: +61 2 9514 7711
Web page: http://www.qfrc.uts.edu.au/
More information through EDIRC

Related research

Keywords: growth optimal portfolio; diversification Theorem; diversified portfolios; equally weighted portfolio; exact simulation;

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Eckhard Platen & Renata Rendek, 2007. "Empirical Evidence on Student-t Log-Returns of Diversified World Stock Indices," Research Paper Series 194, Quantitative Finance Research Centre, University of Technology, Sydney.
  2. Robert Fernholz & Ioannis Karatzas & Constantinos Kardaras, 2005. "Diversity and relative arbitrage in equity markets," Finance and Stochastics, Springer, vol. 9(1), pages 1-27, January.
  3. Eckhard Platen & Renata Rendek, 2009. "Exact Scenario Simulation for Selected Multi-dimensional Stochastic Processes," Research Paper Series 259, Quantitative Finance Research Centre, University of Technology, Sydney.
  4. Eckhard Platen & Renata Rendek, 2010. "Approximating the Numeraire Portfolio by Naive Diversification," Research Paper Series 281, Quantitative Finance Research Centre, University of Technology, Sydney.
  5. Dirk Becherer, 2001. "The numeraire portfolio for unbounded semimartingales," Finance and Stochastics, Springer, vol. 5(3), pages 327-341.
  6. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
  7. Eckhard Platen, 2001. "Arbitrage in Continuous Complete Markets," Research Paper Series 72, Quantitative Finance Research Centre, University of Technology, Sydney.
  8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  9. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, 09.
  10. Eckhard Platen, 2004. "Diversified Portfolios with Jumps in a Benchmark Framework," Research Paper Series 129, Quantitative Finance Research Centre, University of Technology, Sydney.
  11. Norbert Hofmann & Eckhard Platen, 2000. "Approximating Large Diversified Portfolios," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 77-88.
  12. Frey, RĂ¼diger, 1997. "Derivative Asset Analysis in Models with Level-Dependent and Stochastic Volatility," Discussion Paper Serie B 401, University of Bonn, Germany.
  13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  14. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-87, September.
  15. Eckhard Platen, 2001. "A Minimal Financial Market Model," Research Paper Series 48, Quantitative Finance Research Centre, University of Technology, Sydney.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Ignatieva, Katja & Platen, Eckhard, 2012. "Estimating the diffusion coefficient function for a diversified world stock index," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1333-1349.
  2. Eckhard Platen & Renata Rendek, 2010. "Approximating the Numeraire Portfolio by Naive Diversification," Research Paper Series 281, Quantitative Finance Research Centre, University of Technology, Sydney.
  3. Biagini, Francesca & Groll, Andreas & Widenmann, Jan, 2013. "Intensity-based premium evaluation for unemployment insurance products," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 302-316.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:264. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.