IDEAS home Printed from https://ideas.repec.org/p/ucr/wpaper/202306.html
   My bibliography  Save this paper

Asymmetric AdaBoost for High-dimensional Maximum Score Regression

Author

Listed:
  • Jianghao Chu

    (JPMorgan Chase & Co)

  • Tae-Hwy Lee

    (Department of Economics, University of California Riverside)

  • Aman Ullah

    (Department of Economics, University of California Riverside)

Abstract

Carter Hill’s numerous contributions (books and articles) in econometrics stand out especially in pedagogy. An important aspect of his pedagogy is to integrate “theory and practice†of econometrics, as coined into the titles of his popular books. The new methodology we propose in this paper is consistent with these contributions of Carter Hill. In particular, we bring the maximum score regression of Manski (1975, 1985) to high dimension in theory and show that the “Asymmetric AdaBoost†provides the algorithmic implementation of the high dimensional maximum score regression in practice. Recent advances in machine learning research have not only expanded the horizon of econometrics by providing new methods but also provided the algorithmic aspects of many of traditional econometrics methods. For example, Adaptive Boosting (AdaBoost) introduced by Freund and Schapire (1996) has gained enormous success in binary/discrete classification/prediction. In this paper, we introduce the “Asymmetric AdaBoost†and relate it to the maximum score regression in the algorithmic perspective. The Asymmetric AdaBoost solves high-dimensional binary classification/prediction problems with state-dependent loss functions. Asymmetric AdaBoost produces a nonparametric classifier via minimizing the “asymmetric exponential risk†which is a convex surrogate of the non-convex 0-1 risk. The convex risk function gives a huge computational advantage over non-convex risk functions of Manski (1975, 1985) especially when the data is high-dimensional. The resulting nonparametric classifier is more robust than the parametric classifiers whose performance depends on the correct specification of the model. We show that the risk of the classifier that Asymmetric AdaBoost produces approaches the Bayes risk which is the infimum of risk that can be achieved by all classifiers. Monte Carlo experiments show that the Asymmetric AdaBoost performs better than the commonly used LASSO-regularized logistic regression when parametric assumption is violated and sample size is large. We apply the Asymmetric AdaBoost to predict business cycle turning points as in Ng (2014).

Suggested Citation

  • Jianghao Chu & Tae-Hwy Lee & Aman Ullah, 2023. "Asymmetric AdaBoost for High-dimensional Maximum Score Regression," Working Papers 202306, University of California at Riverside, Department of Economics.
  • Handle: RePEc:ucr:wpaper:202306
    as

    Download full text from publisher

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/202306.pdf
    File Function: First version, 2023
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    2. Serena Ng, 2014. "Viewpoint: Boosting Recessions," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 47(1), pages 1-34, February.
    3. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. Elliott, Graham & Lieli, Robert P., 2013. "Predicting binary outcomes," Journal of Econometrics, Elsevier, vol. 174(1), pages 15-26.
    6. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    7. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    2. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    3. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    4. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    5. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.
    6. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    7. Magnac, Thierry & Maurin, Eric, 2007. "Identification and information in monotone binary models," Journal of Econometrics, Elsevier, vol. 139(1), pages 76-104, July.
    8. Aradillas-Lopez, Andres, 2012. "Pairwise-difference estimation of incomplete information games," Journal of Econometrics, Elsevier, vol. 168(1), pages 120-140.
    9. Hoderlein, Stefan & Sherman, Robert, 2015. "Identification and estimation in a correlated random coefficients binary response model," Journal of Econometrics, Elsevier, vol. 188(1), pages 135-149.
    10. Su, Jiun-Hua, 2021. "Model selection in utility-maximizing binary prediction," Journal of Econometrics, Elsevier, vol. 223(1), pages 96-124.
    11. Wan, Yuanyuan & Xu, Haiqing, 2015. "Inference in semiparametric binary response models with interval data," Journal of Econometrics, Elsevier, vol. 184(2), pages 347-360.
    12. Le-Yu Chen, 2009. "Identification of structural dynamic discrete choice models," CeMMAP working papers CWP08/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Arthur Lewbel & Yingying Dong & Thomas Tao Yang, 2012. "Viewpoint: Comparing features of convenient estimators for binary choice models with endogenous regressors," Canadian Journal of Economics, Canadian Economics Association, vol. 45(3), pages 809-829, August.
    14. Le-Yu Chen & Sokbae (Simon) Lee & Myung Jae Sung, 2013. "Maximum score estimation of preference parameters for a binary choice model under uncertainty," CeMMAP working papers CWP14/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Roger Klein & Francis Vella, 2009. "A semiparametric model for binary response and continuous outcomes under index heteroscedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 735-762.
    16. Komarova, Tatiana, 2013. "Binary choice models with discrete regressors: Identification and misspecification," Journal of Econometrics, Elsevier, vol. 177(1), pages 14-33.
    17. Heinz König & Michael Lechner, 1994. "Some Recent Developments in Microeconometrics - A Survey," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 130(III), pages 299-331, September.
    18. Arthur Lewbel & Yingying Dong & Thomas Tao Yang, 2012. "Comparing features of convenient estimators for binary choice models with endogenous regressors," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 45(3), pages 809-829, August.
    19. Chen, Xirong & Gao, Wenzheng & Li, Zheng, 2018. "A data-driven bandwidth selection method for the smoothed maximum score estimator," Economics Letters, Elsevier, vol. 170(C), pages 24-26.
    20. Buchholz, Nicholas & Shum, Matthew & Xu, Haiqing, 2021. "Semiparametric estimation of dynamic discrete choice models," Journal of Econometrics, Elsevier, vol. 223(2), pages 312-327.

    More about this item

    Keywords

    Maximum Score Regression; High Dimension; Asymmetric AdaBoost; Convex Relaxation; Exponential Risk.;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucr:wpaper:202306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelvin Mac (email available below). General contact details of provider: https://edirc.repec.org/data/deucrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.